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A gene’s expression pattern provides clues to its role in normal
physiology and disease. To provide quantitative expression levels
on a genome-wide scale, the Cancer Genome Anatomy Project
(CGAP) uses serial analysis of gene expression (SAGE). Over 5
million transcript tags from more than 100 human cell types have
been assembled. To enhance the utility of this data, the CGAP SAGE
project created SAGE Genie, a web site for the analysis and
presentation of SAGE data (http:��cgap.nci.nih.gov�SAGE). SAGE
Genie provides an automatic link between gene names and SAGE
transcript levels, accounting for alternative transcription and many
potential errors. These informatics advances provide a rapid and
intuitive view of transcript expression in the human body or brain,
displayed on the SAGE Anatomic Viewer. We report here an easily
accessible view of nearly any gene’s expression in a wide variety
of malignant and normal tissues.

In which cells of our body is a human gene expressed? Biologists
gather this information routinely when investigating a gene.

Having a complete picture of gene expression is useful, but
relying on de novo experiments or deciphering the literature to
determine expression levels is slow and inefficient. Electronic
databases that catalog gene expression information are begin-
ning to help biologists rapidly access gene expression levels.
However, the task of methodically cataloguing all transcripts
observed in different human cells is a vast challenge, as is making
the information accurate, accessible, and easy to interpret.

Recent technological advances have made large-scale gene
expression measurements routine. One of these technologies,
serial analysis of gene expression (SAGE) (1), yields transcript
counts independent of an arbitrary measure and is well suited to
forming a digital gene expression database. SAGE counts poly-
adenylated transcripts by sequencing a short 14-bp tag at the
gene’s 3�end, adjacent to the last restriction site, normally NlaIII.
All expressed transcripts with a NlaIII site can be ‘‘tagged’’ and
counted efficiently in large numbers (typically �50,000 per
RNA sample) by using automated sequencing. The tag counts
are then archived electronically for future analysis and digital
comparisons.

The Cancer Genome Anatomy Project (CGAP) SAGE
Project is the largest supplier of public gene expression data, and
has sponsored a SAGE public database for over 4 years (2–4).
These data are posted at the National Center for Biotechnology
Information’s SAGEmap web site (http:��www.ncbi.nlm.
nih.gov�SAGE), where SAGE tags are assigned to UniGene
clusters, differentially expressed tags can be identified, and the
expression level of a particular tag can be displayed (3, 5).
SAGEmap is powerful, but there are additional ways of pro-
cessing and presenting this valuable data, many of which have
been requested by the scientific community. There are, however,
significant challenges. To create new user-friendly tools to
analyze large numbers of genes first requires that gene names be
automatically and accurately linked to a SAGE tag. One use of
such informatics improvements would be to produce an easy
means to view, for the various cells in a human body, the
expression of any gene.

We report here SAGE Genie, a set of tools for processing
SAGE data. Foremost of these tools is the SAGE Anatomic
Viewer, which allows nearly any gene’s transcript levels to be
easily viewed in normal and malignant tissues. The anatomic
view is based on a growing set of over 5.2 million SAGE tags
assembled from 114 cell types, plus new web tools to view this
data. An enhanced link between SAGE tag and gene is based on
an experimental sample of 6.8 million SAGE tags, which was
used to evaluate public transcript sequence databases. These
informatics allow SAGE Genie to automatically identify SAGE
tags from a gene’s primary or alternatively polyadenylated
transcript while screening for experimental artifacts. A large
archive of SAGE data are now more accurately and easily viewed
by using SAGE Genie, including a means to see anatomical-
based gene expression.

Materials and Methods
Experimental SAGE Data. Data for SAGE Genie were collected as
part of the CGAP SAGE Project’s effort to create a compre-
hensive database of human gene expression (3). A network of
collaborators supplied SAGE libraries, data, and corresponding
information. Libraries were constructed by using NlaIII as the
anchoring enzyme and BsmFI as the tagging enzyme as originally
described (1). SAGE 2000 software version 4.12 (http:��
www.sagenet.org) was used to extract SAGE tags, remove du-
plicate ditags, and tabulate tag counts. Linker sequences used in
library construction and 1-bp variations sequences were also
removed from each SAGE library.

Confident SAGE Tag (CST) List. To determine which SAGE tags
have been reliably observed in human mRNA, we first assembled
6,800,316 SAGE tags from 171 SAGE libraries. The libraries
were derived from both cultured and bulk tissue samples. Tags
were obtained from the published human transcriptome (6),
CGAP data (ftp:��ftp.ncbi.nih.gov�pub�sage�seq�) (3), normal
muscle data (7) posted at http:��www.urmc.rochester.edu�smd�
crc�swindex.html, and brain cancer libraries from the National
Cancer Institute Director’s Challenge. A table of the various
libraries used to derive the CST list is posted online at http:��
cgap.nci.nih.gov�SAGE�Download. From this compilation of
6.8 million tags, 464,825 were unique. Linker sequences, 1-bp
variations, and tag sequences occurring only once were removed,
yielding 267,677 unique tags. Sequencing error rates of 6.0%,
4.5%, and 4.5% were estimated for single base pair substitutions,
deletions, and insertions, respectively, and errors were filtered as
described (6). This procedure removed 73,549 potentially erro-
neous tags, leaving 194,126 unique tags that represented the
corrected tag list of CST. After this processing, 6,319,109 of the
original 6,800,316 tag counts remained. The CST list of 194,126
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tags and counts are available at SAGE Genie (http:��
cgap.nci.nih.gov�SAGE�Download).

Transcript Sequence Sources. To provide tag to gene links, the
following seven sources of cDNA sequences were assembled: (i)
The October 2001 release of the Mammalian Gene Collection
(MGC) (8) of completed full-length cDNA sequences (http:��
mgc.nci.nih.gov�). (ii) The December 2001 update of the Na-
tional Center for Biotechnology Information (NCBI) Reference
Sequence (RefSeq) Project (9) (ftp:��ftp.ncbi.nih.gov�refseq�
H�sapiens�mRNA�Prot�). (iii) Predicted transcripts from chro-
mosome 22 (Sanger Center release 2, May 2001) were used to
evaluate genomic predictions. (iv) The human mitochondrial
genome (GenBank accession no. X93334). (v) The ‘‘20K set’’
transcript database was generated by taking the longest non-EST
(expressed sequence tag) cDNA GenBank entry for each Uni-
Gene cluster (10). (vi) ‘‘Consensus sequences’’ databases
(Hs�est) were derived from a UniGene Cluster (December 2001
version) assembly and consensus extraction (11). (vii) Those
ESTs not clustered by UniGene formed the ‘‘unclustered EST’’
databases (Nu).

Virtual Tag Databases. Virtual tags are extracted from transcript
sequences and are predictions of the 10 bp regions that might be
produced by a SAGE experiment. To form virtual tag databases,
the MGC, RefSeq, 20K set, consensus, and unclustered EST
databases were divided into subsets based on the presence of a
poly(A) tail of at least 5 adenosines (databases ending with
‘‘P5R’’), either a AAUAAA or AUUAAA poly(A) signal (SR),
both signal and tail (P5S) and the remaining entries with neither
signal nor tail (R). Four virtual tag databases were formed for
each of the above options, extracting a virtual tag adjacent to the
last four (3�-most) NlaIII sites.

Databases that provide internally primed polyadenylated tran-
script sequences were constructed to provide a means to identify
internal SAGE tags that resulted from cDNA synthesis priming
from a poly(A) stretch other than the poly(A) tail. When
transcript sequences from the MGC, RefSeq, 20K set and
Consensus databases were used, any internal stretch (5� to the
last tag) of at least 8 adenosines in a 10-bp region was first
identified. Virtual tags upstream of this possible internal priming
site were entered into internal primed databases if at least two
internally aligning cDNA or EST sequences were found that
ended within �15 bp of the internal poly(A) stretch and had a
poly(A) tail of at least 5 adenosines. Virtual tag databases for
alternative polyadenylation were constructed in a similar way by
locating shorter transcript sequences with a poly(A) signal and
a poly(A) tail of 5 adenosines that aligned within the longer
entry. The last four virtual tags upstream from the internal
poly(A) stretch were extracted from the longer transcript and
placed in separate databases.

All of the above processing of seven original sources of cDNA
sequence resulted in 105 different virtual tag databases. These
databases were used to provide an association not only between
a specific tag sequence and a transcript accession number, but
also relative tag position and alternative transcripts from the
same gene. The 105 databases were ranked by the percent
representation of the virtual tags in the CST list (http:��
cgap.nci.nih.gov�SAGE�DataSets?RANK � 0) to provide a rela-
tive measure of reliability for each database.

SAGE Genie Tag Selection. SAGE Genie produces an association
between cDNA sequence accession number and SAGE tag. The
percent representation of each of the 105 databases in the CST
list was used to rank each database, relative to each other. A set
of rules were assembled for automated processes where the
SAGE Genie provides the best match between gene name and
tag, though there are options for manually viewing an alternate

tag’s expression data. ‘‘Best tag’’ selection is based on the
ranking of the database where the virtual tag is observed, if
the virtual tag is ‘‘internally primed’’ (yields a lower score), and
the expression level of the various tags within a gene (higher
expressed genes score higher). Details can be obtained at
http:��cgap.nci.nih.gov�SAGE�SAGEHelp.

Results and Discussion
A major goal of CGAP is to assemble and distribute quantitative
expression profiles for representative normal and malignant
cells. In particular, we sought to create a user-friendly method to
view gene expression levels in an anatomical context.

To meet this objective, new bioinformatics were required to
match SAGE tags to gene transcripts automatically and with a
measurable reliability. This was accomplished in three major
steps. First a CST list was distilled from 6.8 million experimen-
tally observed SAGE tags. Second, virtual SAGE tags (predicted
from cDNA transcript sequences) were obtained online and
parsed into 105 databases. These databases reflect the origin of
the transcript sequence, the presence of a poly(A) tail, and other
features described below, and were ranked based on their CST
list representation. In the third major step, customs programs
were created to sift through the 105 databases, chose the best tag
to gene match, and present the results online (Fig. 1). Alternative
transcripts, redundant tags, and internal priming were also
considered for tag selection. This CGAP interface, SAGE
Genie, has an easy means to view quantitative gene expression
by tissue type using the SAGE Anatomic Viewer, as well as
providing other SAGE analysis tools (Table 1).

CST. To have a means to evaluate databases of predicted SAGE
tags extracted from cDNA sequence (virtual tag databases), we
first determined which tag sequences have been reliably ob-
served by SAGE experiments in human cells. A total of 6.8
million SAGE tags, from 171 human SAGE libraries were
compiled, covering a wide range of normal and malignant cells.
These libraries were all constructed by using the same anchoring

Fig. 1. SAGE Genie design. To form SAGE Genie, virtual tags were extracted
from transcript sequence databases and ranked by their level of representa-
tion in the CST list of 194,126 experimentally observed tags. A gene name,
keyword, or 10-bp tag sequence is entered producing a single best tag and a
list of alternate tag to gene associations. Users can also select the Ludwig
Transcript Viewer to see a diagram of alternate transcripts from the same
gene. For any tag, expression can be graphically displayed in an anatomical
context (Anatomic Viewer or Brain View) or in false-color in relation to other
libraries (Digital Northern).
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enzyme, thus all yielding tags likely to be 10 bp downstream from
the 3�-most NlaIII site in the transcript. This allowed pooling of
the tags to create a broad and in-depth sampling of human
transcripts.

From the 6.8 million tags, 267,677 different tag sequences
were observed more than once. Sequencing errors may have
generated some of these tag sequences and we removed potential
errors as described (6). This process removes any tag that is not
observed 5-fold greater than the expected occurrence by chance
sequencing errors. The remaining 194,126 unique SAGE tags
formed the CST list. The CST list was used to evaluate virtual
tag databases because the list represents transcript tags inde-
pendently observed from a large range of different human
cell types.

Virtual Tag Databases. A series of 105 virtual tag databases were
assembled with the purpose of creating an accurate link between

a SAGE tag and a transcript sequence. A virtual SAGE tag is the
10-bp sequence adjacent to a NlaIII site derived from a transcript
sequence that corresponds to what might be observed in a SAGE
experiment. Virtual tags were derived from a variety of sources,
including MGC, Refseq, EST databases, and GenBank. Tags
from these sources were further parsed depending on the
presence of a poly(A) tail and�or a polyadenylation signal in the
transcript sequence, so that tags were grouped based on how
accurately the 3� end of the transcript was defined.

We calculated the percent of cDNA database’s virtual tags
matching the CST list and used this percent to rank the
databases. MGC derived databases predicted the best-
represented SAGE tags. Because MGC generates accurate
sequence from those cDNA clones first found to be full-length,
the commonly occurring 3� ends appear to be best represented.
The percent match is also a ref lection of the sequence quality,
because errors at the tag site can randomly generate tags not
on the CST list. Table 2 summarizes the 3�-most virtual tag
databases assembled for SAGE Genie, and their relative
ranking. A complete list is available at http:��cgap.nci.nih.
gov�SAGE�Download.

Missing Genes. The next step was to identify potential errors in our
expression database, starting with genes that might be missed by
SAGE technology. Less than 1% of the 6,474 sequences from the
MGC full-length cDNA database lacked an NlaIII site. This
finding suggests that SAGE misses less than 1% of transcripts
because of lack of an anchoring enzyme restriction cleavage site
(Table 2). Accordingly, full-length transcripts lacking an NlaIII
site are identified by SAGE Genie and produce an error warning
when a query is attempted.

Redundant Genes. Redundancy was also studied by seeing how
frequently virtual SAGE tags from the transcript databases
matched more than one entry. Some redundancy is genuine
because of different transcripts having by chance the same tag,
but most databases also have multiple entries for the same
transcript. A-10 bp SAGE tag was sufficient to uniquely
identify over 95% of the transcripts by using RefSeq data, and
more than 98% when transcripts were first clustered (20K set

Table 1. SAGE Genie Components posted by CGAP

Name Purpose

Ludwig Transcript Viewer For a given transcript sequence, shows
alternative polyadenylated or
internally primed transcripts that
cluster to the same gene.

SAGE Anatomic Viewer Shades organs or tissues in colors based
on levels of a particular gene
transcript.

SAGE DGED Digital Gene Expression Display allows
comparison between groups of SAGE
libraries to find differentially
expressed genes.

SAGE Absolute Level Lister Lists all the various SAGE Genie libraries.
Provides for each library the
expression level of every expressed
gene, grouped in order.

SAGE Digital Northern For a specific transcript, provides for
each library the normalized expression
level and a comparison in color.

Table 2. Representation of different virtual tags databases when compared to a list of 194,126 confident human SAGE tags

Database origin Abbreviation Total entries Poly(A) signal Poly(A) tail % no NlaIII sites % Representation

MGC MgcSR 10 yes no 0 100.0
MgcP5S 3,827 yes yes 0.8 96.8
MgcP5R 2,532 no yes 0.6 95.4
MgcR 105 no no 0 89.5

RefSeq RefSeqP5S 3,135 yes yes 0.8 90.9
RefSeqP5R 1,760 no yes 0.3 88.4
RefSeqSR 4,480 yes no 0.5 87.0
RefSeqR 4,663 no no 2 68.3

20K set (longest
entry in a
cluster)

20KP5S 5,040 yes yes 0.7 90.0
20KSR 5,433 yes no 0.6 86.0
20KP5R 3,629 no yes 0.5 85.9
20KR 5,430 no no 2.5 69.7

Consensus
sequences

Hs�estP5S 9,793 yes yes 10.7 67.0
Hs�estP5R 7,616 no yes 11.6 62.3
Hs�estSR 4,181 yes no 11.4 54.1
Hs�estR 29,374 no no 13.3 42.0

Unclustered ESTs NuP5S 20,037 yes yes 34.7 77.1
NuR 906,237 nd nd 28.9 43.8
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of longest UniGene Entry). Therefore, it is likely that a 10-bp
SAGE tag in combination with accurate transcript databases
can distinguish 98% of the transcripts from different genes.

To reduce the risk of reporting combined expression data
from a repetitive tag, we identified 50 different repetitive tags
that were present in 20 or more gene clusters. These tags were
programmed to produce an error warning on SAGE Genie. For
these tags it would be difficult to determine which gene was
actually contributing to its expression.

Expression of Internal Tags. There are both biological and exper-
imental reasons why SAGE tags other than the most 3� tag are
observed from the predicted 3� end of a gene. These ‘‘internal’’
tags are genuine when alternative polyadenylation signal usage
produces a shorter transcript. Alternative splicing near the 3� end
and polymorphisms in the NlaIII can also produce shorter
transcripts and bona fide ‘‘internal’’ tags. However, internal tags
could be experimental artifacts. For example, if cDNA synthesis
is primed from somewhere other than the poly(A) tail, or if
NlaIII enzyme digestion is incomplete during library construc-
tion, then a tag will be produced that is not the 3�-most in that
transcript.

Independent of the various ways in which internal tags are
generated, we evaluated virtual tag counts for the 3�-most
predicted tag and the next three internal tags (Fig. 2). For these
four tags, tag counts from the CST list were compared. Regard-
less of the virtual tag database tested, tag counts were over-
whelmingly from the 3�-most tag for all databases (Fig. 2).
Therefore, the 3�-most tag will, on average, produce the most
highly expressed virtual tag. However, even the small expression
of internal tags suggests that they should be considered when
linking all tag possibilities to a gene. Internal tags could also be

Fig. 2. Expression of SAGE tags by transcript position. The percentage of tags
by position is displayed for the last four tag positions from nine virtual tag
databases. Regardless of the virtual tag database analyzed, the 3�-most (po-
sition 1) virtual tag has the highest average representation. The databases
shown are the longest entry in a UniGene cluster (20K), a database of con-
sensus sequences (Hs�est), nonclustering EST sequences (Nu), the MGC, and the
Reference sequence (RefSeq) database. The databases were parsed in a
poly(A) signal and poly(A) tail containing part (ending in ‘‘P5S’’) and a re-
maining part containing all other entries (ending in ‘‘R’’).

Fig. 3. The SAGE Anatomic Viewer. (A) Expression profile for chondroitin sulfate proteoglycan (BC010571) found by the SAGE DGED to be highly expressed
in brain malignancies when compared with normal tissues. The brain cancer group appears in pink for an average expression of 32–64 tags per 200,000, compared
with all other classes of tissue with average expression of �8 tags per 200,000 (shades of blue). (B) Digital Northern of the same highly expressed gene based
on all libraries archived at SAGE Genie.
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deliberately considered to investigate differential expression of
transcripts from a particular gene. We therefore developed
additional informatics described below to identify internal tags
based on how they might be produced.

Alternatively Polyadenylated Transcripts. Genes that produce al-
ternate 3� ends can influence SAGE tag usage. To specifically
address this influence, alternative polyadenylated virtual tag
databases were generated. The databases with the longer tran-
script sequence entries were blasted against EST and full-length
databases to determine whether a shorter entry existed that had
a poly(A) tail and signal. If these shorter transcripts predicted an
internal tag in the longer transcript, the tag was archived as an
alternatively polyadenylated (PA) virtual tag. Experimental
evidence was therefore used to support a means by which
alternative polyadenylated transcripts could be identified, and
the SAGE expression levels for that transcript could be accessed.

Internally Primed Sequences. Evidence was found in the EST
databases that cDNA synthesis priming could occur from inter-
nal stretches of adenosines, rather than just from the poly(A) tail
added by polyadenylase. ESTs with a poly(A) tail of at least 5
adenosines were observed that ended at a transcribed internal
stretch of adenosines from a longer transcript sequence. Tag

sequences upstream from the confirmed internal poly(A) stretch
were extracted from the various entries to form databases of
possible internally primed (IP) virtual tags. These databases are
used to identify the artifactual generation of SAGE tags from
internal priming, and warn SAGE Genie users that a tag is
caused by internal priming.

Mitochondrial Tags. Transcripts encoded by the mitochondrial
genome, as well as contamination with mitochondrial genomic
DNA, can be found by SAGE. All possible 49 tags from the
mitochondrial genome were used to form a virtual tag database.
Many mitochondrial tags are highly expressed in human cells.
SAGE Genie alerts the user if a tag maps to the mitochondrial
genome, but still displays its expression level.

SAGE Genie Informatics. The informatics tools that are available on
SAGE Genie are shown in Table 1, and Fig. 1 shows the overall
design of SAGE Genie. Expression data in the form of SAGE tag
counts flow into SAGE Genie from the various labs and
sequencing centers. Public transcript data were downloaded,
virtual tags were extracted, and 105 databases were formed and
ranked for reliability. SAGE Genie informatics allow a single
best tag to be selected based on the database ranking, filtering
for artifacts and a partial preference for highly expressed tags.

Fig. 4. (A) Detailed tag to gene associations obtained for the v-Ki-ras2 rat sarcoma 2 viral oncogene homolog. The best tag selected by SAGE Genie is
highlighted. Other tags for the same gene are less abundant based on their tag frequency (expression level in dataset of 5.2 million tags) and are generated as
a result of alternative polyadenylation (PA) or internal priming (IP). (B) The Ludwig Transcript Viewer shows the transcript sequence encoding v-Ki-ras2 as a blue
line. The colored boxes represent the last four virtual tags and show position relative to the 5� end of the gene, with expression levels in the database provided
in the key to the right. An internal stretch of at least 8 adenosines is found at position 2165 and is marked as A� on the blue line. The accession numbers of
sequences that confirm IP transcripts or PA transcripts are given below the corresponding position in the blue line representing the v-Ki-ras2 transcript.
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This automatic tag selection allows the association of SAGE data
for large numbers of genes, starting with gene names or accession
numbers, and can be accessed through the Anatomic Viewer
(Fig. 3A). Advanced users are still provided with the opportunity
to view alternative tags, using tag-to-gene associations provided
by SAGE Genie (Fig. 4A) and the Ludwig Transcript Viewer
(Fig. 4B).

The SAGE Anatomic Viewer enables researchers to deter-
mine transcript expression in various tissues, for example brain
cortex, cerebellum, muscle, blood, heart, liver, kidney, lung,
colon, and breast. The database will expand as tags from tissue
types are continuously being added. Fig. 3A displays the expres-
sion profile of a chondroitin sulfate proteoglycan (BCAN) that
was found by using the SAGE Digital Gene Expression Display
to have high expression mainly in brain cancers. The expression
level for a particular gene can also be viewed for all of the
libraries by using the SAGE Digital Northern (Fig. 3B). Expres-
sion levels are color-coded using the same color scheme as the
SAGE Anatomic Viewer. SAGE library names for SAGE Genie
have been labeled by using a consistent naming convention that
contains organ site of tissue origin, tissue histology or pathology,
a code for type of tissue purification (or culturing), and a unique
identifier.

Differentially expressed genes can be found by comparison for
various SAGE libraries using the SAGE Digital Gene Expres-
sion Display (SAGE DGED). Highly expressed genes in a given
tissue can be listed by using the SAGE Absolute Level Lister
(SALL). This list can be downloaded and used for those groups
wishing to perform analysis on the genes from a particular tissue.
One potential application for SAGE DGED and SALL is to help
design custom DNA arrays that target highly or differentially
expressed genes for a particular tumor or tissue.

SAGE Genie Testing. SAGE Genie was tested against published tag
to gene associations (3, 12–15) by using those tags that were
experimentally verified by Northern blotting, real-time PCR, in
situ hybridization, and�or immunohistochemistry. In total 70
tags of the 77 yielded the reported gene description. The 7 tags
that were ‘‘mismatched’’ by SAGE genie were analyzed in detail,
and 5 of these tags appeared to be incorrectly assigned in the
various publications, perhaps by errors in the reported tag
sequence. In one case, a new gene name had been added to a
former ORF. In the last case, the authors had chosen a tag from
a less abundant cDNA, but still from the same gene. Starting first
with gene name and obtaining a tag sequence on SAGE Genie
produced the converse: the reported tag in 70 of the 77 test cases.
Therefore, SAGE Genie was able to correctly assign a SAGE tag
to a gene in nearly all cases, but it is, of course, dependent on the

accuracy of the transcript databases from which it is derived.
Updated versions of the virtual tag databases for SAGE Genie
will continue to improve its accuracy.

Future Directions. SAGE is a powerful technology that has been
adopted as a standard for gene expression by CGAP and others.
The over 5 million (and growing) SAGE tags make this set of
data the most in-depth sequence-based human expression da-
tabase. This large amount of data are now more easily inter-
preted and exploited by using SAGE Genie, and its utility will
grow with each new tissue added.

SAGE Genie’s enhanced tag predictions need to be contin-
ually improved. Planned updates with the sequence data from
transcript finishing projects will further increase accuracy. Al-
though chromosome 22 genomic sequence predictions were not
as reliable as cDNA predictions (data not shown), genomic
sequence might still be used. The accuracy of genomic sequence
might be combined with cDNA defined 3� ends to improve
virtual tag prediction. Alternatively, another method for gener-
ating 21-bp SAGE tags (16) allows transcript mapping directly to
genomic sequence.

We have considered both alternative polyadenylation and
internal primed generation of transcripts. This provides a ratio-
nale to group tags for a given gene. It also allows investigators
to observe how alternative transcripts might be differentially
expressed between tissues or between tumor and normal. These
modular databases provide a foundation for easy addition of new
alternative tag databases. Databases that identify alternative
tags because of splicing or single nucleotide polymorphisms
could be added next.

To help decipher how the human genome is used differently
between normal and malignant tissues, an accurate and com-
prehensive archive of transcript counts is needed. The CGAP
SAGE project is characterizing normal and malignant transcrip-
tomes by setting a goal of over 100,000 transcript tag counts from
a series of representative tissues. SAGE Genie was created for
better analysis and dissemination of these digital gene expression
profiles.
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