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Multiple pathways are responsible for transducing mechanical and
hormonal stimuli into changes in gene expression during heart
failure. In this study our goals were (i) to develop a sound statistical
method to establish a comprehensive cutoff point for identification
of differentially expressed genes, (ii) to identify a gene expression
fingerprint for heart failure, (iii) to attempt to distinguish different
etiologies of heart failure by their gene expression fingerprint, and
(iv) to identify gene clusters that show coordinated up- or down-
regulation in human heart failure. We used oligonucleotide micro-
arrays to profile seven nonfailing (NF) and eight failing (F) human
hearts with a diagnosis of end-stage dilated cardiomyopathy.
Biological and experimental variability of the hybridization data
were analyzed, and then a statistical analysis procedure was
developed, including Student’s t test after log-transformation and
Wilcoxon Mann–Whitney test. A comprehensive cutoff point com-
posed of fold change, average difference, and absolute call was
then established and validated by TaqMan PCR. Of 6,606 genes on
the GeneChip, 103 genes in 10 functional groups were differen-
tially expressed between F and NF hearts. A dendrogram identified
a gene expression fingerprint of F and NF hearts and also distin-
guished two F hearts with distinct etiologies (familial and alcoholic
cardiomyopathy, respectively) with different expression patterns.
K means clustering also revealed two potentially novel pathways
associated with up-regulation of atrial natriuretic factor and brain
natriuretic peptide and with increased expression of extracellular
matrix proteins. Gene expression fingerprints may be useful indi-
cators of heart failure etiologies.

Regardless of etiology, underlying mechanisms that contrib-
ute to development and progression of heart failure result

from altered neurohormonal or mechanical (hemodynamic)
stimuli (1). However, multiple molecular pathways are believed
responsible for transducing these stimuli into changes in gene
expression during the process of heart failure. Microarrays can
provide an effective platform to examine these pathways in terms
of mRNA expression (2).

Attempts using oligonucleotide (2) and cDNA (3) arrays have
previously been made to identify genes differentially expressed
in failing (F) and nonfailing (NF) human hearts. In a previous
study from our laboratory (2), two NF donor hearts and two F
human hearts with diagnoses of end-stage ischemic and dilated
cardiomyopathy (DCM), respectively, were studied, and 19 genes
were reported to be differentially expressed. Using a cardiovas-
cular specific cDNA microarray, Barrans and colleagues exam-
ined two normal adult and two human hearts with diagnosis of
hypertrophic cardiomyopathy. They reported 39 differentially
expressed genes or expressed sequence tags (3). In this study,
fold change in expression was used as the cutoff point.

The existence of significant biological variability in expression
levels of many genes between human hearts is widely recognized.
Experimental variability inherent in the microarray technology
also exists. Consequently, many genes will show fairly large
changes in gene expression by chance alone because of biological
and�or experimental variability. Therefore, to correctly inter-

pret microarray data, it is essential to include multiple samples
in each group and to employ statistical methods capable of
distinguishing chance occurrences from biologically meaningful
data (4). Moreover, an evaluation of fold change without also
considering absolute expression levels can be misleading in the
interpretation of microarray data.

Therefore, we set three goals for this study: to establish sound
statistical protocols resulting in a comprehensive cutoff point
(including parameters for evaluation for both relative changes and
absolute expression levels) to identify differentially expressed
genes; second, to generate a gene expression profile of F human
hearts from a large sample of F and NF hearts than previously
attempted; and third, to determine whether heart failure of differ-
ent etiologies is distinguished by distinct gene fingerprints.

Materials and Methods
mRNA Preparation and Hybridization to Oligonucleotide Array. Tissue
from left ventricular free wall was obtained from explanted F hearts
of transplant recipients at the Cleveland Clinic Foundation (CCF)
with a diagnosis of DCM. Tissue from NF hearts was from
unmatched organ donors through Lifebanc of Northeast Ohio. All
protocols were approved by the CCF Institutional Review Board
and all patients gave informed consent. Age, medication, and an
index of cardiac function (left ventricular ejection fraction) were
obtained (Table 1). Tissue handling was as described (2, 5). Total
RNA was isolated from the myocardium by using TRIzol reagent
(GIBCO�BRL) as described by the manufacturer. Double-
stranded cDNA was synthesized from 15 �g total RNA by using the
Superscript Choice System (GIBCO�BRL) with an HPLC-purified
oligo(dT) primer containing a T7 RNA polymerase promoter
(GENSET, La Jolla, CA) following manufacturer’s instructions. In
vitro transcription was carried out with 1 �g cDNA using ENZO
BioArray RNA transcript labeling kit (ENZO Diagnostics, Farm-
ingdale, NY). Fragmentation of biotinylated cRNA (20 �g), pro-
tocols, and reagents for hybridization, washing, and staining fol-
lowed instructions provided by Affymetrix.

TaqMan Quantitative Reverse Transcription (RT)-PCR. We used the
same total RNA pools for both microarray and RT-PCR analyses.
RT of 5 �g total RNA was carried out in a 100-�l reaction using
SuperScript kit (Life Technologies). Using 5 �l of the reverse
reaction as template, quantitation was performed by using an ABI
Prism 7700 sequence detection system (TaqMan) using the 5�
nuclease activity of TaqDNA polymerase to generate real time
DNA analysis (7). Amplifications were generated by 10 min at 95°C
and then 40 cycles of denaturation at 95°C for 15 s, annealing, and
extension at 62°C for 1 min by using TaqMan universal PCR Master
Mix kit (Applied Biosystems). TaqMan PCR for all four selected

Abbreviations: NF, nonfailing; F, failing; DCM, dilated cardiomyopathy; BNP, brain natri-
uretic peptide; ANF, atrial natriuretic factor; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase.
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genes was performed by using 15 RNA specimens isolated from
each of the 15 samples. The TaqMan assay was repeated either
twice (connexin 43, cysteine protease, cAMP response element-
binding protein) or three times (PLA2). To standardize the quan-
titation of four selected genes, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) from each sample was quantified on the same
plate with the four target genes by using TaqMan GAPDH Control
Reagents kit (Applied Biosystems).

Data Extraction and Statistical Analysis. Detailed protocols for data
extraction from Affymetrix oligonucleotide arrays and documen-
tation on the sensitivity and quantitative aspects of the method
have been described (2, 8). Affymetrix HuFl 6800 GeneChips
containing 6,606 unique genes were used in this study with one
GeneChip used for each human heart sample. To make com-
parisons across GeneChips, data sets on each GeneChip were
normalized to a targeted total f luorescence of 300, representing
total cRNA hybridized to the GeneChip. MICROSUITE 4.0
(Affymetrix) was used for data extraction.

Before any analyses were performed, all data were screened
for any genes with a negative average difference value (negative
values were considered as zero for further analysis). We used
SAS�STAT 8.2 (SAS Institute, Cary, NC) for all statistical analyses.
Tests for determination of normality and equal variances were
performed to examine whether our data qualified for parametric
statistical tests. Although data for the majority of genes were
normally distributed (Shapiro–Wilk, P � 0.05) with equal vari-
ances among samples (equal variances test, P � 0.05), distribu-
tion of expression of levels of a number of genes did not satisfy
criteria of normality (data not shown). Thus to use parametric
analysis, a lognormal distribution was used. If g1F is gene 1 for
an F heart, g1NF is the same gene for a NF heart, and x � ln g1F

and y � ln g1NF, then g1F � ex and g1NF � ey, where x and y are
normally distributed (data not shown), x and y can then be
compared by using standard parametric methods, such as Stu-
dent’s t test. The average difference after log-transformation
between F and NF hearts was compared by using Student’s t test.
GeneSpring (Silicon Genetics, Redwood City, CA) was used for
data mining.

Results and Discussion
Reproducibility and Variability of Hybridization Data. Before any
statistical analysis was applied to the hybridization data, repro-
ducibility of the data was assessed. The difference between the
average percent of genes reported to be ‘‘present’’ (34% � 4%

Fig. 1. Scatter plots of the absolute intensity values for the 6,606 unique
genes represented on the GeneChip. Red dots represent genes called present;
yellow dots represent marginally present; blue dots represent absent; green
lines (from inside to outside) represent 2-fold, 3-fold, 5-fold, and 10-fold
change, respectively. (A) Experimental variability between two preps from the
same NF (Dr) heart. (B) Experimental variability between two preps from the
same F (Tx) heart. (C) Biological variability between two F hearts. (D) Biological
variability between two NF hearts.

Table 1. Characteristics of nonfailing donor hearts and
failing hearts

Sample Age Sex Diagnosis LVEF Treatment

Nonfailing
NF1 26 F MVA 70 DP
NF2 38 M MVA 70 DP, EP, NE
NF3 52 M CVA 45 DP
NF4 29 M CVA 50 DZ, CD, EL, LP
NF5 69 M CVA NA DP, NE
NF6 46 F CVA 70 NE
NF8 52 M CVA 85 DP, TX

Failing
F1 26 M DCM 13 DG
F2 49 M DCM 20 AD, CP, DG
F3 41 M DCM 15 AD, CP, DG, DT
F4 56 M DCM 10 AD, CP, DG, MN
F5 46 M DCM 12 AD, DG, LP, MN
F6 52 M DCM 15 CP, DG
F7 56 M DCM 25 AD, MN
F8 59 M DCM 10 AD, CP, DG, DT, MN

LVEF, left ventricular ejection fraction; MVA, motor vehicle accident; CVA,
cerebrovascular accident; DP, dopamine; EP, epinephrine; NE, norepineph-
rine; DZ, ditiazem; CD, clonidine; EL, enalapril; LP, lisinopril; TX, thyroxine; DG,
digoxin; AD, amiodarone; CP, captopril; DT, dobutamine; MN, milrinone; LP,
lisinopril.
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vs. 34% � 3%) and the mean average difference of the house-
keeping gene GAPDH (27,329 � 4,625 vs. 24,971 � 2,181)
between the NF and F groups, were not statistically significant
(P � 0.05) (Table 4, which is published as supporting information
on the PNAS web site, www.pnas.org).

To identify major sources of experimental variability, two inde-
pendent replicates of a sample of an F and NF heart, respectively,

were performed. Overall expression patterns for the 6,606 genes on
the Chip were plotted (Fig. 1). The expression levels of each of the
genes for both the F and NF heart were highly correlated between
two replicates for most of the genes on the Chip (Fig. 1 A and B).
This was evident for genes called ‘‘present’’ (red dots) in both F and
NF hearts and with an ‘‘average difference’’ � 150 units. However,
expression levels for genes with a lower absolute intensity (average
difference �150 units) and�or those identified as ‘‘absent’’ (blue
dots) were not well correlated, indicating that the reported hybrid-
ization data from genes with low expression level and�or genes with
an ‘‘absent’’ call are unreliable. Four examples of genes with high
absolute intensity and a ‘‘present’’ call are shown in Fig. 2. These
data indicate low experimental variability and high reproducibility.

To establish a statistical protocol for data analysis, we also
examined biological variability in gene expression between dif-
ferent hearts within the F and NF groups. We first compared the
overall expression patterns for the 6,606 genes on the GeneChip
between two samples. Although expression levels of most genes

Fig. 2. Biological and experimental variability for four sample genes.

*, P � 0.01, Student’s t test after log-transformation and Wilcoxon test. FH�B,
biological variability in eight F hearts; FH�E, experimental variability in
three replicates of one F heart; NF�B, biological variability among seven NF
hearts; NF�E, experimental variability in three replicates of one NF heart.
(A) �-Crystallin. (B) Thrombospondin-4. (C) �-Antichymotrypsin. (D) Apoli-
protein D.

Fig. 3. Flowchart of steps for implementation of statistical protocols and
our comprehensive cutoff points for data mining. 229 is the subset of 337
(Wilcoxon test, P � 0.01) and 270 (Student’s t test, P � 0.01) that meet the
criteria of P � 0.01 of both tests. Genes were filtered with mean of average
difference � 200 units of the F heart group for up-regulated genes, and NF
group for down-regulated genes. Genes were further filtered by absolute
call � P or M in at least six of eight F hearts for up-regulated genes or five of
seven NF hearts for down-regulated genes.
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(red dots) between two samples in both NF and F groups were
highly correlated (Fig. 1 C and D), there was noticeably more
scatter of the data, as compared with the replicates (Fig. 1 A and
B). This was evident when we plotted four examples (Fig. 2), thus
indicating that biological variability is relatively high. These
results also indicated that the variability (both biological and
experimental) observed in the microarray data could be suffi-
ciently high to generate a significant number of false positives if
multiple samples are not included. It is also important to note
that, as shown for experimental variability, both the absolute call
and minimum absolute intensity need to be integrated into the
cutoff point to minimize the rate of false positives.

Development and Implication of Statistical Protocols and a Compre-
hensive Cut-Off Point for Statistical Significance. To minimize like-
lihood of false positives, we performed two independent analyses
using parametric and nonparametric tests for genes that were
potentially differentially expressed. Using a P � 0.01, corre-

Fig. 4. Correlation of average difference units of cysteine protease detected by
hybridization to the GeneChip and threshold cycle by TaqMan quantitative PCR.
Threshold cycle number was standardized by GAPDH, which was detected at the
sametimeascysteineprotease.A lowervalueofthresholdcycle indicatesahigher
original expression level (average difference) of cysteine protease.

Table 2. Genes with most significant changes in expression between F and NF hearts

GenBank accession no. Name

Mean of NF,
average difference units

�SD

Mean of F,
average difference units

�SD
Fold

change

Up-regulated genes
M31776 BNP 751 � 367 5,956 � 1,908 1 7.9
M54951 ANF 1,477 � 1,228 6,249 � 1,434 1 4.2
M25296 ANF precursor 2,108 � 751 6,986 � 1,137 1 3.3
M55998 �1 collagen type I 716 � 319 2,667 � 1,199 1 3.7
Z74616 Prepro-�2 collagen type I 98 � 79 485 � 312 1 4.9
D13666 Osteoblast specific factor 2 40 � 39 474 � 281 1 12
U21128 Lumican 462 � 158 1,753 � 561 1 3.8
X06700 Pro-�1 collagen type III 156 � 37 510 � 229 1 3.3
Z19585 Thrombospondin-4 293 � 101 1,040 � 425 1 3.5
M92934 Connective tissue growth factor 246 � 110 794 � 435 1 3.2
Z24724 Poly(A) site DNA 196 � 81 540 � 114 1 2.7
U10550 GEM GTPase 131 � 29 359 � 114 1 2.7
M59287 CDC-like kinase 1 126 � 45 341 � 84 1 2.7
HG2755 T-plastin 87 � 54 234 � 98 1 2.7
L02950 M�-crystallin 1,327 � 372 3,389 � 648 1 2.6

Down-regulated genes
M22430 Phospholipase A2 1,563 � 673 304 � 92 2 5.1
L19267 Myotonin protein kinase 1,072 � 709 217 � 186 2 4.9
K02765 Complement component 3 1,071 � 332 230 � 110 2 4.6
HG3945 Phospholipid transfer protein 409 � 130 12 � 203 2 35
M26311 Cystic fibrosis antigen 294 � 114 22 � 68 2 13
X07315 Nuclear transport factor 255 � 127 32 � 152 2 7.8
M12963 Alcohol dehydrogenase I 723 � 188 150 � 239 2 4.8
M33195 Fc-epsilon-receptor �-chain 316 � 64 67 � 64 2 4.7
S80437 Fatty acid synthase 259 � 162 55 � 108 2 4.6
M14539 Factor XIII subunit 915 � 493 208 � 614 2 4.4
M80359 MAP�microtubule affinity

regulating kinase 3
319 � 72 96 � 112 2 3.3

U42031 Progesterone receptor-
associated immunophilin

456 � 167 169 � 109 2 2.7

D17408 Calponin 1931 � 1337 726 � 2825 2 2.7

Genes are ranked by fold change and expression level.

Table 3. Changes of four selected genes validated by TaqMan
quantitative PCR

GenBank
accession no. Name

GeneChip,
fold change

TaqMan,
fold change

M22430 Phospholipase A2 2 5.1 2 8.5 � 0.4
D55696 Cysteine protease 1 1.8 1 1.7 � 0.2
X52947 Connexin 43 1 1.8 1 1.6 � 0.3
U31903 cAMP response element-

binding protein
1 1.7 1 1.5 � 0.2

TaqMan PCR for 4 selected genes was performed in 15 RNA specimens
isolated from 15 hearts. All data (threshold cycle) were standardized by
GAPDH. The fold change was relative to the NF group.
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sponding to a concordance of 86% (9), the Wilcoxon Mann–
Whitney test generated 371 potentially differentially expressed
genes between NF and F hearts (Fig. 3). Although a high
concordance value, in combination with fold-change, has been
reported to significantly lower detection of false positives (9), the
Wilcoxon test only takes into consideration absolute difference
between two groups in generating a concordance value. Stu-
dent’s t test considers both absolute difference and its variance.
Our first potential list of 229 genes was generated by using P �
0.01 from both Wilcoxon and Student’s t tests (Fig. 3). The final
list of 103 genes was obtained after implementation of our
comprehensive cutoff points. A flow chart demonstrating the
statistical approach used is shown in Fig. 3.

Validation by TaqMan Quantitative PCR. To validate our GeneChip
data, we used TaqMan quantitative PCR on three genes with a fold
change (1.7–1.8�, see Table 5, which is published as supporting
information on the PNAS web site) close to one criterion (1.7�) of
our comprehensive cutoff and one gene (PLA2) with higher fold
change (5.1�, Table 2). All four genes, phospholipase A2, protease,
connexin 43, and cAMP response element binding protein showed
consistent changes with Taqman quantitative PCR and GeneChip
analysis (Table 3). The relationship between cycle number (by
Taqman PCR) and average difference (GeneChip) for one of these
genes (Fig. 4) further validates our hybridization data.

Genes Differentially Expressed Between F and NF Hearts. Of the 103
genes found to be differentially expressed in F and NF hearts, 65,
or 63.1%, were up-regulated and 38, or 36.8%, were down-
regulated. All of these genes were divided into 10 functional
groups under the headings biomarkers, myofibrillar, extracellu-
lar matrix�cytoskeletal, proteolysis�stress, metabolism, apopto-
sis�inf lammatory, signal transduction, immune system, and
genes of unknown function (Table 2).

A comparison of genes differentially expressed between F and
NF hearts in this study and the 19 genes previously reported by our
laboratory to be differentially expressed (2) shows the increased
expression of atrial natriuretic factor (ANF), �-crystallin, and
�1-antichymotrypsin measured previously in F hearts to be con-
firmed in the current study. �B-crystallin, myosin light chain 2,
�-actin, and SLIM1 showed consistent changes in both studies but
were not included in the final list in this study because they did not
meet our comprehensive cutoff point (Fig. 3)

In F hearts, ANF, ANF precursor, and brain natriuretic peptide
(BNP) were ranked as the top three of all up-regulated genes in
terms of fold change and expression level. We defined this subgroup
as biomarkers of heart failure. Consistent with the fact that during
development of heart failure, myocytes revert to a pattern of fetal
gene expression, e.g., increased expression of myosin heavy chain-�
(10, 11) and replacement of cardiac �-actin by skeletal �-actin (11),
cardiac �-actin was found to be down-regulated and myosin heavy
chain-� up-regulated in the F hearts (Table 5).

Genes encoding extracellular matrix�cytoskeletal proteins rep-
resent another group with a significant increase in expression in F
hearts. The majority of these genes (77%, 10 of 13) were up-
regulated (Table 5). Considering the maladaptive remodeling pro-
cess that occurs in F hearts, this was not unexpected. Increased
expression of collagen types I and III, the major collagen subtypes
in the myocardium and major determinants of tissue stiffness,
represents an adverse environment for cardiac myocytes and plays
a central role in the progressive deterioration of F hearts (13, 14).
Although most genes in this subset were previously reported to
show increased expression in heart failure, changes in expression of
fibromodulin, t-plastin, fibronectin, and desmosome-associated
protein were not previously reported.

Consistent with the fact that proteolysis and activation of a
stress response occurs in F hearts in response to neurohormonal
and mechanical injury (15, 16), the majority (80%, 8 of 10) of

genes encoding proteolysis�stress related proteins showed in-
creased expression (Table 5). It is interesting to note a 3.5-fold
up-regulation of thrombospondin-4 in F hearts. Similar findings
were reported in two recent gene expression profiling studies in
a rat myocardial infarct model (9) and in skeletal muscle from
muscular dystrophy patients (6). Although the implications of
thrombospondin-4 up-regulation in heart failure is unknown,
association of thrombospondin-4 with cardiac disease is high-
lighted by a recent report indicating that a missense variant
(A387P) is associated with premature myocardial infarction (17).

Seventeen genes encoding proteins involved in metabolism
were differentially expressed (Table 5). It is interesting to note
that genes encoding proteins involved in fatty acid metabolism,
e.g., apoliprotein D, fatty acid synthase, phospholipid transfer
protein, were exclusively down-regulated. However, genes re-
lated to glucose metabolism, such as fructose 1–6 biphosphatase

Fig. 5. Hierarchical clustering of 15 hearts and 103 genes. (A Left) Dendro-
gram of 15 different heart samples, 7 NF and 8 F, recapitulates the major
distinction between 7 NF and 8 F based on their similarity in genes expression.
The total of 103 genes were clustered based on their expression patterns
among 15 hearts. A trust color bar indicates the relative changes (fold) of
mean absolute intensity of F group over NF group. (B) Nine gene clusters
generated by K means (K � 9) clustering algorithm. Sets 1 and 6 correspond to
the clusters of gene shown by red and orange bar, respectively (A). Most genes
in set 5 and a partial list of genes in set 2 correspond to clusters of genes shown
by the yellow bar (A). On the x axis, the first 7 hearts are NF hearts and the next
8 are F hearts.
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and mitochondrial NADP(�)-dependent malic enzyme, were
up-regulated. These observations may indicate the fact that the
primary myocardial energy source switches from fatty acid to
glucose in heart failure (18).

Metallothionein and metallothionein 1L are stress-inducible
and metal binding proteins. Their antioxidant function and
regulation of apoptosis in the heart has previously been reported
(20). �1-antichymotrypsin, a serine protease inhibitor, has been
reported to attenuate myocardial ischemic injury (21, 22). Con-
sistent with observations of increased apoptosis in F human
hearts (19), decreased expression of �1-antichymotrypsin (3),
metallothionein, and metallothionein 1L, may indicate that the
anti-apoptosis pathway is inhibited in F hearts.

Elevated local levels of transforming growth factor (TGF)-�1 are
believed to be involved in triggering remodeling of the extracellular
matrix of the myocardium in DCM (23). Up-regulation of two
TGF-� binding proteins in F hearts with dilated cardiomyopathy
may be related to local elevation of TGF-�1.

Clustering of Differentially Expressed Genes. Distinct from clustering
into functional groups, two unsupervised clustering algorithms
were applied to the 103 differentially expressed genes. We used a
hierarchical clustering method to generate a dendrogram for gene
expression patterns across the 15 hearts. The results recapitulated
the pattern of differences in gene expression between NF and F
hearts (Fig. 5A). Of note, F hearts 3 and 5 were clustered together,
away from the six other F hearts (Fig. 5A). Whereas all eight of these
F hearts were diagnosed with DCM, F heart 3 was from a patient
with alcoholic cardiomyopathy, and F heart 5 was from a patient
with familial cardiomyopathy. Gene clusters associated with heart
failure of a specific etiology are marked with a yellow bar (Fig. 5A).
Genes encoding proteins involved in signal transduction or tran-
scription, e.g., myocyte-specific enhancer factor 2, regulator of G
protein signaling 2, stromal cell-derived factor 1, fibroblast growth
factor 1, and also cardiac-specific genes such as myosin heavy chain
�, connexin 43, fibromodulin and �2-actinin, were up-regulated in
all of the other six F hearts, but only slightly up-regulated in F hearts
3 and 5 compared with the NF hearts. These are indicated as sets
2 and 5 in Fig. 5B. An expression profiling study on four different
mouse cardiac hypertrophy models also demonstrated divergent
transcriptional responses to independent genetic causes of cardiac
hypertrophy (24). Findings from both F human hearts and mouse
models indicated that heart failure of different etiology may involve
different genetic determinants for their development. Further
comparison of these two studies revealed a number of genes such
as ANP, osteoblast specific factor 2, cytochrome P450, metal-
lothionein 1, phospholipase A2, collagen, �2-actinin, etc., showing
consistent changes in expression level in both studies.

A K means (K � 9) clustering algorithm was also applied to
recluster the 103 genes based on their expression patterns among

the 15 hearts. This method clusters genes that show coordinated
fluctuations in gene expression across the 15 samples. The resulting
nine clusters (Fig. 5B) were highly consistent compared with those
generated by hierarchical clustering (data not shown). Based on the
assumption that groups of genes that fluctuate together in expres-
sion levels may be regulated by common mechanisms, or alterna-
tively, that one or more genes in the cluster regulates expression of
other genes of the cluster, we attempted to interpret the gene
expression patterns in some of these sets, in the context of possible
molecular pathways involved in heart failure.

The most prominent clusters were sets 1 and 6, which showed
significantly enhanced gene expression in F hearts (Fig. 5B). Three
collagen isoforms, thrombospondin-4 and insulin-derived growth
factor I (IGF-I) were clustered in set 1, defined as extracellular
matrix related genes. It was not unexpected to see IGF-I in the same
set as collagen because IGF-I up-regulation occurs in patients with
hypertrophic cardiomyopathy (25). Furthermore, IGF-I overex-
pression of fibroblasts plays an important role in tissue remodeling
during heart failure. IGF-I-stimulated fibroblast proliferation and
myofibrillar collagen synthesis has been demonstrated in the rat
heart (26). Another interesting set was set 6, defined as biomarkers
for heart failure (ANF, BNP, ANF precursor, Lumican, and GEM
GTPase). Of 103 genes, all three biomarkers for heart failure
clustered in the same set. However, whether there is a link between
GEM and ANF�BNP up-regulation remains to be determined.
GEM GTPase is a mitogen-induced RAS-related GTP-binding
protein overexpressed in skeletal muscle with type II diabetes
mellitus (27, 28). Involvement of two mitogen activated Ras pro-
teins in pathways for both ANF and BNP up-regulation in cardiac
myocytes has been reported (29, 30). Whether increased expression
of this Ras protein is involved in ANF and BNP up-regulation is an
interesting future direction. Thus, unsupervised clustering of genes
according to expression patterns across hearts permits identifica-
tion of potentially coregulated genes or pathways regulating gene
expression.

In summary, we conclude that the gene expression profile
identified in this study represents a gene fingerprint for human
heart failure and that unsupervised clustering segregates two
failing hearts with different diagnoses, thus offering the exciting
possibility of identifying DCM hearts of distinct etiologies.
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