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INTRODUCTION

Stereology is concerned with the mathematical reconstruction of three dimensional
structure based on the mensuration of (ideally) two dimensional images. In biomedical
research, this usually means thin histological sections prepared for light and electron
microscopy. Measurements of recognizable components in the sections are made by
superimposing a test lattice bearing a pattern of areas, lines and points, referred to
as test probes. By evaluating the chance encounters between the components and the
test probes, quantitative information characterizing organelles, cells and tissuesmay be
derived (Weibel, 1969,1974; Elias, Hennig& Schwartz, 1971 ; Weibel &Bolender, 1973).
The majority of stereological parameters are ratios, and amongst these there

exists a core of fundamental relationships known as 'the component densities'. The
best known and most frequently employed component densities are those which
refer component volume (V), surface area (S), length (M) and number (N) to
a specified containing volume, for example that of the average cell in a population.
By convention, component densities in a volume are given the symbols Vv, Sv, Mv
and NAV respectively (Weibel, 1969).
A synopsis of these basic relationships is given in Table 1. The list is not intended

to be complete; for instance, component numerical density in a volume (Nv) may
be estimated in other ways, but these are equivalent to the formulation shown, par-
ticularly when the particles being counted are spherical. Moreover, not all component
densities can be estimated with each type of test probe: Vv can be estimated from
the ratios AA, LL and Pp (that is, using any test probe) but Sv can only be calculated
with the aid of areal or linear probes, and not with test points, since the probability
of a test point hitting a profile boundary trace is effectively zero.
Component densities in a volume are undoubtedly valuable descriptors of bio-

logical structure. However, cell surfaces and their specialisations (e.g. synapses,
desmosomes and microvilli) are often of greater interest than volumes. Consequently,
there is scope for relating component dimensions to a containing surface at least,
since such parameters may be more pertinent to studies attempting to correlate
structure with function. In fact, by an elementary and systematic approach it is
possible to extend the basic relations to embrace the component densities Ss, MS and
NS (on a surface), MM and NM (along a length) and NN (in a number). Unfortunately,
the newcomer to this field will not find a comprehensive list of these possibilities in
the relevant literature.

This report provides such a list. It includes comparatively simple derivations of
principles for estimating the additional component densities, and presents them in
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Table 1. 'Basic stereological parameters' andprinciplesfor their estimation. Principles
for use with alternative test probes (areas, lines, points) are indicated in sequence

Component
parameter Reference parameter V

Volume, V Vv = AA = LL = PP
Surface, S Sv = (4In)BA = 2lL
Length, M Mv = 2QA*
Number, N Nv = NA/D

t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Component L
dimension In 3-dimensional case

* Note: The symbols M (length of structure) and Q (transections of lineal structure by a test area)
follow recommendations in Weibel & Bolender (1973). They maintain consistency in the meanings of L
and P, which are reserved for test lines and test points respectively. The formula MV = 2QA is therefore
equivalent to Lv = 2PA, which is often used in the literature.

a form which makes them easier to understand and apply. Useful relations between
parameters are emphasised, and some practical applications are discussed. A prelim-
inary communication of this work has been presented already (Mayhew, 1978 a).
For those with the necessary mathematical expertise, a generalised treatment of
most of the relationships will be found in Miles & Davy (1976).
The system of parameter indexing adopted in the ensuing text is modelled on

suggestions made byWeibel (1969, 1976). On this system, the descriptor SVC,e indicates
the surface density of a component surface c in a containing reference volume e, and
Ssa.c the surface density of a surface feature a on the surface of c. The same rationale
is employed for indexing the principles by which the parameters are estimated.

COMPONENT DENSITIES ON A SURFACE

Principles can be established for estimating the parameters SS, Ms and Ns,
component densities per reference surface.
Imagine a three dimensional structure (c) on the reference surface of which lie two

structural differentiations (a and b), a being in the form of a number of discrete
patches or discs and b in the form of a curved continuous line or filament. Let c be
embedded in a containing volume (e). Now, let e be transected by random planes.
By dimensional reduction (vide infra), the volume e will be represented on each
section by an area (A); the surfaces of c and a will appear as boundary trace lengths
(B), and the thin filament b will be represented by transections (Q). Linear test probes
applied to the sections will make intersections (I) with the boundary traces of c and a
(see Fig. 1).

(A) Surface density on a surface (SS)
From the principles shown in Table 1 we obtain

Svcc,e = (4/1J)BAC,e = 2ILc,e (1)

SVa,e = (4/IT) BAa,e = 2ILa.e (2)
from which it follows, dividing (2) by (1), that

S$a,c = Ba/Bc = Ia/Ic.
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Fig. 1. A simple model to illustrate principles for estimating component densities on a surface.
The containing volume (Ve) encloses a sphere on the surface of which lie two structural types,
a surface feature in the form of' patches' or 'discs' and a lineal feature. On sectioning, the sphere
is represented by a circular profile of trace length B,, the discs by traces of total length B. and
the filament by a number of transections (Qb). For clarity, disc traces and filament transections
are shown separately on the sections. See text for further details.

The total reference area (A) and total line scan (L) are common and cancel out,
since SVC,e and Sva,. are estimated from the same sample of sections (or micrographs).
The relation can be written in abbreviation as SS = BB = II, and we observe the
analogy with Vv = AA = LL = PP.

Thus, the surface density of a specialised feature a on surface c may be estimated
in two ways:

(i) on a test area by relating the total trace length ofa to the total trace length of c,
and

(ii) using linear probes by relating the total intersections of trace a with the test lines
to the total intersections of trace c by those same-lines (Fig. 1).
The relation SS = BB has been invoked repeatedly by neurohistologists interested

in quantifying synaptic apposition zones, trace lengths being measured directly by

I
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means of an opisometer (odometer, map-measurer's wheel) in order to estimate SS
(e.g. Blackstad & Dahl, 1962). The numerical equivalence of ratios BB and I, is
determined by B = (7T/2) . I. h, where h is the spacing between the test lines (Weibel,
1969).
The relation SS = I, will also be found in Weibel & Bolender (1973). Weibel

(1976) has provided an expression for calculating the relative standard error (S.E.)
of SS estimates:

S.E. = V(1.-S)/(S*.Ij)
where I, is the total number of intersections of c counted. The formula allows a pre-
diction of minimal sample size required to achieve a certain precision for SS.

(B) Length density on a surface (Ms)
The basic formulations also indicate that

MVb,e = 2QAb,e (3)

and dividing (3) by (1) we obtain

Msb ,c = (2QAb,e)/((4/17T) BAc,e) = (2 QAb,e)/(2ILc ,e).

Since the test area (A) is common and related to the test line length (L) by the
spacing (h) between test lines, this yields

Msb,c = (Qb/Bc)/(2/7T) = (Qb/Ic)/h
or, again as an abbreviation, Ms = (7T1/2) QB = Q1/h.

Thus, the length density of feature b on surface c may be estimated
(i) on a test area by relating the number of transections ofb to the total trace length

of c, and
(ii) using linear probes by relating the number of transections of b to the total

intersections of trace c and the spacing between those probes (Fig. 1).
This new relation, Ms = Q1/h, may also be derived from absolute dimensions of

the component and its containing surface using formulae cited in Elias et al. (1971).
If the containing volume e is serially sectioned into slices of uniform thickness T,
the absolute length of filament b is given by the expression

Mb = 2Qb.T
and the absolute surface area of c by

Se = 2I.h.T

where h is the spacing of test lines superposed on each serial section.

(C) Numerical density on a surface (Ns)
From Table 1, we have

Ava,e = NAa,elDa (4)
where D,, represents the mean caliper diameter of the patches (a) on the surface of c.

Let us now impose some restrictions on the shape and size distribution of these
patches such that each can be described by a thin flat circular disc of diameter Aa.
Then the mean diameter of the total monodisperse population will be Aia and for
such a population Da = (ff/4)Aa (Hilliard, 1967).
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Fig. 2. A simple model to illustrate principles for estimating component densities along a length.
The containing volume (V.) encloses a long filament (f) which bears regions of specialisation (g).
On sectioning, these lineal features give rise to transections, totals Qf and Qw, shown on the
section. See text for further details.

Dividing formula (4) by (1), we obtain

Nsa,c = (NAa,e/Da)/((4/ff)BAc,e).
Now since the reference area (A) is constant, substituting for Da yields

Nsa,c = NBa,c/Aa
or, more simply, NS = NB/1. Observe the similarity to Nv = N,/D.

Thus, the numerical density of a feature a on a surface c may be estimated on
a test area by relating the number of observed traces of a to the total trace length of
c and the mean diameter ofa (Fig. 1).

In fact, the derivation presented above is for a very restricted model of known
feature (disc) size and shape. However, the basic formulation was derived first by
Cruz Orive (personal communication, 1975) who adopted a more rigorous approach
of much wider validity and applicability. Therefore, it may be possible in practice
to relax the present constraints provided I can be adequately defined in terms of
feature size and shape, a situation that also pertains with D (Weibel, 1974).
An alternative formulation, NS = Ssl/s where s is mean disc surface area, has

been proposed by Kaiserman-Abramof & Peters (1972). For circular discs ofuniform
size, mean disc surface is calculated from s = (vA2)/4.

In practice of course, mean disc diameter must be estimated from measured trace
lengths appearing on the section. Where the discs are all of the same size, mean trace

7-2
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length B= (7T/4)/v (Kaiserman-Abramof & Peters, 1972). Hence, for such discs
B = D. For polydisperse populations of circular discs a more flexible approach is
required and it is necessary to reconstruct the true size distribution of the discs from
the size distribution of measured trace lengths (see, for example, Anker & Cragg,
1974).

COMPONENT DENSITIES ALONG A LENGTH

In this section, principles for establishing MM and NM are proposed. For this
purpose, imagine a thin curved filament (f) randomly embedded in a reference con-
taining volume (e) and bearing a number of discrete regions of specialisation (g)
scattered along its length. If e is transected by random planes, then on each plane
the volume will be represented by an area (A) and the lineal structures f and g will
appear as transections (Q), as illustrated in Figure 2.

(A) Length density along a length (MM)
From basic principles we obtain the following length densities in the common

containing volume
Mvf,e = 2QAf,e (5)

Mva,e = 2QAg,e (6)
and dividing (6) by (5) we have

MMU,f = Qi/ QAf
which, since A is common to both, is a new basic principle MM = QQ. Once again,
observe the analogy with other stereological principles which have consistency in
the component and reference dimensions (i.e. principles for estimating Vv and SS).
The formulation indicates that the length density of a feature g along a reference

lengthf is estimated using arealprobes by relating the total transections ofg to those
off (Fig. 2).

(B) Numerical density along a length (NM)
Let g be composed of individual filaments of mean length m. From Table 1, we see

that Nvg,,e may be determined by invoking the relation
NV,e = NAg,e/Dg (7)

and that
Mvf,e= 2QAf,e. (8)

For thin filaments of mean length m randomly oriented within a containing
volume, D = mn/2 (Hilliard, 1967). Therefore, dividing (7) by (8)

NMg,f = (2NAg,e/rn)/(2QAf,e)
= (NAg,e/QAf,e)/7i

or, since A is constant, NM = NQ/Im which is equivalent in practice to QQ/li and
also to MM/mn.

Thus, the numerical density of a lineal feature g along a reference length f is
estimated using arealprobes by the relationship between the numbers oftransections of
g andf and the mean length ofg (Fig. 2).
From these five classes of basic principles it is now possible to extend Table 1

by systematically filling in the gaps. A summary of present findings is therefore
offered in Table 2.
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Table 2. An extended list of basic stereological relations for comparison with
Table 1

Reference parameter
Component ,
parameter V S M N

Volume, V Vv = AA = LL = PP
Surface, S Sv = (4/n)BA = 21L Ss = BB = II-
Length, M Mv = 2QA_S = (1r/2)QB = QI/h MM = QQ
Number, N Nv = NA/D Ns = NB/A NM =NQ/mI see text

t t t
Component D A m
dimension In 3-dim. case In 2-dim. case In 1-dim. case

The symmetries evident in these relationships are more extensive than indicated.
For example, NM = MM/lm and NS = SS/S are reminiscent also of the Loud (1968)
formulation Nv = Vv/V, where v is mean particle volume. As Weibel & Bolender
(1973) have pointed out, these symmetries reflect an underlying and fundamental law
of dimensional reduction which, for the three dimensional case, takes the form

dt = do+dp-3
where do, dp and dt refer to the dimensions of the object (component, feature), the
test probe and the image presented by the probe respectively. Thus, a volume
(do = 3) sectioned by an area probe (dp = 2) is represented by an area (dt = 2) but
a surface (do = 2) sectioned by the same probe appears as a trace length (dt = 1).
So we see Vv = AA and SS = BB in this context.

OTHER POSSIBILITIES

The obvious lateral extension of Table 2 would be to derive expressions for
estimating the parameter NN, the number of components contained by a single
reference stucture (e.g. nuclei per average cell). Like the corresponding densities
VN, SN and MN this may be derived quite simply by multiplying an appropriate
component density by its corresponding absolute reference parameter. For instance.
VN may be calculated from Vv. i, where VT is the absolute reference volume; SN by
SV-.V or S5.5r and so on. On this regime, NN could be estimated in several ways
(e.g. by Nv. Vr).

In addition, for two convex bodies a and b (a being contained by b) of profile
numerical densities NAa and NAb, with mean caliper diameters Da and Db, the
number of structures a per structure b would be

NNa ,b = (NAa/5Da)/(MAb/Db)r
Relations between the basic parameters often prove useful for deriving other

information which, for various reasons, is difficult to obtain by direct measurement
on the sections. They also allow one to economise on analytical effort. As two
illustrations, consider the following.

For a long cylindrical structure, the relation between Vv and Mv can be used to
assess the mean cross sectional area (d) of that structure, since

Vv/Mv= V/M = a.
This equation has been employed (Mayhew & Momoh, 1974) to approximate the
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mean calibre (cross sectional) diameter of blood vessels in the ventral horn of rat
spinal cord. In the same study, Sv was calculated from the same micrographs and
used to estimate blood vessel surface-to-volume ratio since

Sv/ Vv = S/ V.

A third relationship also has interesting potential, particularly for determining
synaptic population densities. For a monodisperse population of flat circular discs,
B = D (vide supra). Thus, their numerical density per unit volume, estimated from
plane sections, is given by Nv = NA/B (see Mayhew, 1978 b). Note that D is not the
same as A (cf. Anker & Cragg, 1974).
The newcomer should try to appreciate the potential of such inter-relations of

stereological parameters as they are often overlooked.

PRACTICAL APPLICATIONS OF THE PRINCIPLES

It is not the intention here to give an exhaustive list of possibilities for applying
the fundamental stereological relations to biological material. Their potential is
better appreciated by referring to the wealth of published applications, most of which
rely solely on methods shown in Table 1. Nevertheless, the neophyte might find
a general guide, to which he can compare his own model system, helpful.
At least some of the principles described herein have been applied already, albeit

to a very limited extent. Let us consider first component densities on a surface.
Many cell surface specialisations are of great functional interest to biologists.

Intercellular adhesion complexes and neuronal synapses provide two useful examples
for present purposes, both being of some physiological importance. In fact, the
relation SS = BB is a familiar one to neurologists: Kaiserman-Abramof & Peters
(1972), for example, used an opisometer to evaluate the relative surface area of Betz
cell perikarya occupied by axon terminals in cat cereblal cortex. More recently,
Gabella (1976) has adopted the same approach to assess the coverage of smooth
muscle cells by caveolae in the guinea-pig taenia coli.
Sometimes intersections are much easier to quantify than trace lengths and a more

efficient method is then offered by the relation Ss = II. This method has been adopted
by Mayhew & Tring (1977, unpublished observations) to assess the relative surface
area of stratum corneum cells covered by modified desmosomes in normal human
skin and in psoriasis. The same approach has been used by White & Gohari (personal
communication, 1977) to study desmosomes and hemidesmosomes in hamster cheek-
pouch epithelium.

In the above applications, synapses, desmosomes and caveolae were regarded as
regions of differentiation within the cell plasmalemma. About 23% of the Betz cell
perikaryon is covered by axon terminals and, by coincidence, roughly 230 of the
surface of an average stratum corneum cell in normal skin is occupied by modified
desmosomes. About 40 % of the basal plasmalemma of stratum basale cells in
normal cheek-pouch epithelium makes hemidesmosomal contact with the under-
lying basal lamina, compared with only 13 % in a carcinoma.

Exactly the same basic relations can be invoked to estimate the Ss values for
different types of synaptic contact or the glial cell investment of neurons (Blackstad
& Dahl, 1962; Conradi, 1969); the relative surface of nuclear envelope occupied by
nuclear pores; the relative surface ofplasmalemma labelled by an immunocytochemi-
cal marker; the relative surface of capillary endothelium broken by fenestrations,
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and so on. Blouin, Bolender & Weibel (1977) have used the relationship to compare
the distribution of membranes between different cell types in liver and other
possibilities are mentioned by Weibel (1976) for estimating surface complexity
factors introduced by microvilli, membrane ruffles and such.

To-date, I know of no published application of stereological principles for
estimating Ms. However, they could be used for instance to determine the length
densities of zonulae occludentes (tight junctions) which bind adjoining epithelial
cells such as intestinal absorptive cells and cells in the stratum comeum of amphibian
skin (e.g. Farquhar & Palade, 1963, 1965).

Estimators of Ns have also been applied to synapses and desmosomes: each
100 #m2 of Betz cell perikaryon forms symmetrical synapses with some 13 axon
terminals (Kaiserman-Abramof & Peters, 1972). An equivalent surface of rat spinal
motoneuron perikaryon bears roughly 10 synapses, its proximal dendrites about 28
and its distal 26 (Momoh, 1976). These figures compare favourably with densities of
5 and 8 per 1iOOnM2, calculated for two neurons in the lateral geniculate nucleus of
the rat by reconstruction of serial sections (Karlsson, 1966). Each 1oo tm2 of
stratum corneum cell membrane in human epidermis has about 250 desmosomal
contact sites (Mayhew & Tring).

In these Ns studies, contact sites were assumed to be flat ciicular discs for the sake
of calculation, and mean disc diameter was estimated from feature trace length
(measured either directly with an opisometer or estimated from numbers of inter-
sections made with linear test probes).
As a descriptor of cell morphology, Ns could be used also to estimate the number

of nuclear pores per unit surface of nuclear envelope; the number of microvilli, cilia
or pinosomes per unit cell surface; the number of caveolae per unit surface of smooth
muscle cell; the relative numbers of ribosomes per unit surface of rough endoplasmic
reticulum and so on.

Applications for component densities along a length are less obvious since suitable
biological mimics of the theoretical models are harder to find. A further problem
with NM = NQ/ln may be the difficulty of establishing m from random transections.
However, MM = QQ could be employed to establish the relative lengths of urinifer-
ous tubule segments in kidney (perhaps also different functional segments along
secretory ducts) and for comparing the lengths of different structures in a common
containing volume (e.g. different types of filament in skeletal muscle; myelinated and
unmyelinated axons, or axons and dendrites in nervous tissue; tubules in axons in
nerve fibres).
NN estimators are of great value for defining numbers of nuclei/cell, nucleoli/

nucleus, liver cells/lobule, secretory cells/acinus, synapses/neuron and so on.

CONCLUDING REMARKS

Stereological analysis of tissue sections rests on certain assumptions about the
design and representativeness of sampling, thickness of section, and unambiguity of
definition of components (for more details consult Weibel, 1969; Elias et al. 1971;
Miles & Davy, 1976). These constraints apply equally to the additional component
densities described here.
A particular bugbear is section thickness: the above principles assume true plane

sectioning but histological sections have a finite thickness. This tends to an over-
estimation of component densities, the magnitude of error depending on the relative
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size of component and section thickness, and it is not always possible to correct for
this. It should be borne in mind that numerical densities of relatively small structures
will be over-estimated, and it is to be hoped that correction procedures for dealing
with inflated NS and NM estimates will become available as they are for NV data.

Whilst section thickness over-estimates Sv values, Weibel (1976) has suggested
this error may be less important for SS.

It is emphasised that the derivations offered here are not proofs. Their validities
depend in turn on those of the principles appearing in Table 1. However, they have
been proved in general by Miles & Davy (1976).

In conclusion, a systematic attempt has been made to extend the list ofstereological
principles in order to include component densities on a surface (which seem to have
important biological potential) but also component densities along a length. Recent
work, particularly within the last 6 years, has made increasing use of these new
possibilities but the newcomer has not, until now, been able to find a more compre-
hensive list than those which refer to component densities in a volume.

SUMMARY

There exists in the literature a core of formulations regarded as 'the basic stereo-
logical principles' for quantifying cell and tissue morphology. They may be used to
obtain information relating component volume, surface area, length and number
to a specified containing volume (the so-called component densities in a volume:
Vv, Sv, Mv and Av). However, principles may also be formulated for relating these
component dimensions to a containing surface (Ss, MS and NS), containing length
(MM and NM) and a containing number (NN).
Methods for estimating these previously neglected stereological relations are

presented. Possible biological applications of the principles are also discussed.

I wish to thank Professor R. Barer for his continued support and encouragement
and for valuable suggestions to improve this manuscript. I am also grateful to
Mr F. H. White and Dr K. Gohari (Department of Oral Pathology, University of
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