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Single-Channel Analysis of Inactivation-Defective Rat Skeletal Muscle
Sodium Channels Containing the F1304Q Mutation
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ABSTRACT The intracellular linker between domains Il and IV of the voltage-gated Na channel mediates fast inactivation.
Targeted alteration of one or more of a triplet of hydrophobic amino acids within this linker region results in a marked slowing
in the decay of ionic current. The mechanism of this defective inactivation was explored in rat skeletal muscle sodium
channels (1) containing the F1304Q mutation in Xenopus laevis oocytes with and without coexpression of the rat brain g,
subunit. Cell-attached single-channel patch-clamp recordings revealed that the 1-F1304Q channel reopens multiple times
with open times that are prolonged compared with those of the wild-type channel. Coexpression of the B, subunit stabilized
a dominant nonbursting gating mode and accelerated the activation kinetics of u1-F1304Q but did not modify mean open
time or fast-inactivation kinetics. A Markov gating model incorporating separate fast- and slow-inactivation particles
reproduced the results by assuming that the F1304Q mutation specifically influences transitions to and from fast-inactivated
states. These effects are independent of interactions of the mutant channel with the B, subunit and do not result from a
change in modal gating behavior. These results indicate that F1304Q mutant channels can still enter the inactivated state but

do so reversibly and with altered kinetics.

INTRODUCTION

Voltage-gated sodium channels underlie the upstroke of the
cellular action potential in cardiac and skeletal muscle and
neuronal tissue. Within such excitable cells, sodium current
is rapidly activated by membrane depolarization, but, with
maintained depolarization over tens of milliseconds, the
majority of this current inactivates completely. On the mo-
lecular scale, single-channel patch-clamp recordings dem-
onstrate that individual sodium channels open briefly one or
a few times in response to strong depolarizing voltage
stimuli and then remain closed for the duration of the
depolarizing voltage pulse (Aldrich et al., 1983; Vanden-
berg and Horn, 1984; Grant and Starmer, 1987; Yue et al.,
1989). The final inactivating event appears to be mediated
by an intracellular segment of the channel protein linking
domains III and IV, referred to as the “inactivation gate,”
that occludes the inner mouth of the channel pore (Stiihmer
et al., 1989; Vassilev et al., 1988, 1989; Moorman et al.,
1990; Patton et al., 1992; West et al., 1992). Translocation
and subsequent docking of this gate to a hydrophobic re-
ceptor region within the pore (McPhee et al., 1994, 1995)
results in a stable nonconducting (i.e., inactivated) state that
persists until the membrane is repolarized and the inactiva-
tion gate is released.

A triplet of hydrophobic amino acids (isoleucine—phenyl-
alanine-methionine) within the inactivation gate region ap-
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pears to mediate binding of the gate to its receptor and
thereby stabilizes the fast-inactivated state of the channel.
Directed mutation of one or more of these amino acids to
less hydrophobic residues results in markedly slowed inac-
tivation of the sodium current in whole-cell experiments
(West et al., 1992; Hartmann et al., 1994). The changes in
macroscopic kinetics may result from removal of fast inac-
tivation with retention of slow inactivation, destabilization
of fast inactivation (i.e., no longer absorbing), or shifts in
modal gating behavior. Only limited single-channel data are
available to define precisely the nature of the defect in
gating (West et al., 1992; Hartmann et al., 1994). To gain
further insight into the molecular mechanisms underlying
normal and defective sodium channel inactivation, we have
employed single-channel patch-clamp recordings to exam-
ine the gating behavior of heterologously expressed rat
skeletal muscle sodium channels with inactivation disrupted
by a single amino acid mutation (F1304Q) within the III-IV
linker region. A multistate gating model constructed from
these records demonstrates that this mutation significantly
influences only transitions to and from fast-inactivation
states. These effects are not produced by changes in modal
gating and are independent of a change in the interaction of
this mutant channel with the B, subunit.

MATERIALS AND METHODS
Molecular biology and heterologous expression

An expression plasmid containing the full-length cDNA encoding the pl
rat skeletal muscle sodium channel a subunit (Trimmer et al., 1989) was
cloned into pGEM-9Zf(—) (Promega, Madison, WI). A 2.5-kb Sph 1-Kpn
1 restriction digest fragment from the 1 cDNA encoding nucleotides 2230
to 4760 was subcloned into pGEM-7Zf(+) (Promega). In vitro site-di-
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rected mutagenesis using uracil-containing DNA and phagemid vectors
introduced a single amino substitution at position 1304, replacing phenyl-
alanine for glutamine within the cytoplasmic linker between the third and
fourth homologous domains of the sodium channel (Kunkel et al., 1987);
this site lies in the center of three hydrophobic residues that appear to
mediate fast inactivation of the sodium channel. The entire segment was
sequenced by the dideoxy chain termination method (Sequenase, U.S.
Biochemical, Cleveland, OH) and subcloned back into pGEM-9Zf(—) to
form the full-length mutant sodium channel gene.

As previously described (Tomaselli et al., 1991), complementary RNA
was prepared for both the wild-type and the mutant w1 sodium channels
and microinjected into freshly isolated mature Xenopus laevis oocytes. In
some experiments, the rat brain sodium channel B, (Isom et al., 1992,
1995) cRNA was coinjected with the a subunit cCRNA at a molar ratio of
1:1. We refer to the wild-type channel as 1 and to the mutant channel as
r1-F1304Q.

Electrophysiological recordings

Sodium channel currents were recorded at room temperature from oocytes
in the cell-attached configuration 2—-4 days after cRNA injection as pre-
viously described (Backx et al., 1992). Currents were measured with an
integrating headstage (Axon Instruments, Burlingame, CA), sampled at 10
kHz and low-pass filtered (four-pole Bessel, —3 dB at 2 kHz). The pulse
protocol involved holding potentials from —120 to —60 mV and test
potentials from —60 to +10 mV at a repetition frequency of 0.67 Hz. The
more positive holding potentials were used to avoid stacking of openings
in multichannel patches during measurements of channel open times; the
few remaining stacked openings were excluded from the analysis. The
number of channels per patch was determined as the maximum number of
stacked openings in response to depolarizations to —20 mV in long runs
(>100 sweeps). The patch pipette contained (in mM) 140 NaCl, 1 BaCl,,
and 10 HEPES (pH 7.3). The bath solution consisted of (in mM) 140 KC1
and 10 HEPES (pH 7.3).

Data analysis

Single-channel unitary current amplitudes were determined from fits to
amplitude histograms. These histograms were generated from well-re-
solved single-channel openings chosen from several sweeps and fitted with
normal Gaussian distributions by use of a nonlinear, least-squares mini-
mization algorithm in Origin (Northampton, MA). The unitary current
amplitude was determined as the difference between the means of the
histograms for the baseline current and the open-channel current. For the
wild-type channel at positive test potentials, openings were short and
sometimes poorly resolved and resulted in amplitude histograms that
underestimated the full unitary current amplitude. In these cases, a manual
estimate of the current amplitude was made.

For subsequent analysis, single-channel records were corrected for leak
currents and capacity transients by digital subtraction of smooth templates
fitted to records with no openings. Most patches contained 1-3 sodium
channels. An event detection scheme based on a half-height criterion
(Colquhoun and Sigworth, 1983) was used to generate an idealized form of
the current from which ensemble averages and histograms were con-
structed. Mean open time was determined as the time constant of the best
single-exponential fit to the open time histogram (Origin).

Convolution analysis (Aldrich et al., 1983) was performed as previously
described (Yue et al.,, 1989) to assess the frequency of reopenings. The
convolution in the time domain of the first latency density function with the
open time density function matches the open probability time course if a
channel opens only once per depolarization epoch. For a channel that
reopens one or more times, this convolution integral accounts for only a
fraction of the total open probability and demonstrates the contribution of
first openings to the ensemble.
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Markov modeling

To examine the effect of the F1304Q mutation on the gating of the ul
channel, we fitted ensemble-average currents obtained from selected
patches to a gating model by a numerical approach. The model (Fig. 8 A
below) was modified (Tomaselli et al., 1995) from that recently described
by Kuo and Bean (1994) for sodium channel gating in rat hippocampal
CAI1 neurons so that our model included a second binding particle that was
responsible for slow inactivation. The channel opens following activation
of four independent and identical voltage sensors (rate constants na; n =
1-4) and a subsequent gating transition (rate constant ). The open channel
may close to the last closed state (rate constant 8) and to deeper closed
states (rate constants nf3; n = 1-4), to a fast inactivation state (/,; rate
constant k,), or to a slow inactivation state (/,; rate constant kg). Inactiva-
tion may result from block of any state by a fast (rate constants k,a™; n =
1-4) or slow (rate constants kgb"; n = 1-4) inactivation particle, and the
affinity of the channel for either particle increases as the channel activates.
To satisfy microscopic reversibility, factors a (identical to those in Kuo and
Bean (1994)) and b (derived in a manner analogous to that for a) were
incorporated into the rate constants to account for changes in gating
kinetics when an inactivation particle is bound. Although other modifica-
tions to the single-particle Kuo—Bean formulation (1994) may also account
for slow inactivation, our model readily reproduced the kinetics of a
slow-inactivation process that is heavily modulated by 8, coexpression.

As previously described, the fitting algorithm determines a set of rate
constants that minimize the difference between the calculated probability
of open state occupancy and the measured open state probability (Balser et
al., 1990a,b). From single-channel data recorded at —20 mV, we obtained
the open probability by dividing the ensemble-average current by the
single-channel current amplitude and the number of channels in the patch.
A numerical integration method for solving stiff differential equations,
LSODA (Hindmarsh, 1983; Petzold, 1983), was used to calculate the open
state probability from a model consisting of a set of initial rate constant
estimates. The sum of the rate constants for transitions out of the open state
was constrained by the experimentally measured mean open time. Data
from pl and w1-F1304Q were fitted simultaneously to gating models that
differed only in the values of the rate constants governing transitions to and
from the fast-inactivated state (rate constants k,, k,, ks, k,). Data from
r1-F1304+ B, were fitted by a similar model that was constrained by the
measured mean open time and the w1-F1304Q model rate constants for
transitions to and from the fast-inactivated state (rate constants k,, k,, ks,
k,). A modified Simplex algorithm (Nelder and Mead, 1965) for minimiz-
ing the residual sum of squares was utilized to compare the models to the
patch ensemble open probabilities and to update the rate constants.

RESULTS
Single-channel recordings

Fig. 1 illustrates the single-channel behavior of the wild-
type wl and mutant wl-F1304Q channels expressed in
Xenopus oocytes without coexpression of the B; subunit.
Representative traces and ensemble averages are shown in
response to step depolarizations to —60 and 0 mV, respec-
tively, in cell-attached one-channel patches. The w1 records
(Fig. 1 A) demonstrated the expected mode 1 voltage-
dependent gating pattern (Zhou et al., 1991). Qualitatively,
the mutant w1-F1304Q channel (Fig. 1 C) had a similar
unitary conductance and first latency but had more reopen-
ings and longer open times. Inspection of long-lasting patch
recordings demonstrated that the w1 channel exhibits modal
gating behavior, consistent with previous observations
(Zhou et al., 1991; Ji et al., 1994). Two gating modes were
readily identified in each of three patches when ul was
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FIGURE 1 Single-channel recordings from cell-attached patches in Xe-
nopus oocytes. Representative sweeps were selected from one-channel
patches expressing ul (A) and p1-F1304Q (C) sodium channels in re-
sponse to depolarization from a holding potential of —120 mV to test
potentials of —60 and 0 mV, respectively, for 100 ms. Although gating is
not significantly altered at —60 mV, the mutant channel has more frequent
channel reopenings and longer open times relative to the wild-type channel
at 0 mV. Ensemble-average currents (B, D) demonstrate the delayed decay
of peak current in the p1-F1304Q channel compared with that in the pl
channel.

expressed in Xenopus oocytes. The dominant mode, referred
to as mode 1, was distinguished by a rapid first latency and
very infrequent reopenings. In contrast, in the less fre-
quently observed mode, mode 2, the first openings were
delayed (relative to mode 1 first latencies), and the channel
reopened multiple times in a rapid bursting pattern.

Whereas ensemble average currents of the pl channel
inactivated completely within 50 ms (Fig. 1 B), ensemble
averages from the wl1-F1304Q channel decayed more
slowly and incompletely, even at 100 ms (Fig. 1 D). These
features were examined in greater detail, and the results are
presented below.

Single-channel unitary current amplitudes (Fig. 2) were
determined, when possible, from amplitude histograms
(open symbols) from 3-6 patches at test potentials from
—60 to +10 mV. At potentials where openings were quite
brief, the amplitude histograms were not well fitted by
Gaussian distributions and tended to underestimate the true
unitary current amplitude. Therefore a best manual estimate
(filled symbols) was made after inspection of the longest
and best-resolved openings from many sweeps. The slope
conductance for ul was 28 * 1 pS and for F1304Q was
30 % 1 pS. Thus, permeation is not altered by the F1304Q
mutation.

Voltage-dependent gating

The most striking difference between the single-channel
records of w1l and w1-F1304Q was in the number of channel
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FIGURE 2 Unitary current amplitudes (i) from u1 and n1-F1304Q sodium
channels at membrane potentials from —60 to 10 mV (N = 3 at each potential)
determined from amplitude histograms (open symbols) where possible or by

_eye (filled symbols) when openings were brief. The slope conductance for p.1

was 28 * 1 pS and for n1-F1304Q was 30 * 1 pS.

openings/100 ms depolarization epoch at membrane poten-
tials above —60 mV, as demonstrated in Fig. 1. The con-
tribution of reopenings to the total current in w1l and pl-
F1304Q patches during step depolarizations to —20 mV
was assessed by convolution analysis, as shown in Fig. 3.
The open time density function (7,) was convolved with the
first latency density function (f) for both channel types and
resulted in a function (7, * f) that reflected the component of
the current that was contributed by the initial openings in
each sweep. For the ul channel this convolution closely
approximates the open probability (p,). This verifies that, at
—20 mV, the wild-type channel usually opens only once
before inactivating. For the w1-F1304Q channel the convo-
lution reproduced more than 90% of the peak open proba-
bility but fell far short of the subsequent open probability
curve, indicating that channel reopenings were responsible
for the persistent plateau of current in whole-cell and single-
channel ensemble currents.

The second notable gating change in the mutant channel
was a marked and progressive prolongation of mean open
time relative to the p1 channel at potentials above —60 mV
(Fig. 4). Furthermore, whereas the 1 channel demonstrated
a shortening of open time above 0 mV, open times in the
F1304Q channel approached a plateau rather than shorten-
ing at these potentials. Three to six patches were studied at
each test potential.

Modal gating behavior

Fig. 5 summarizes data from a one-channel patch containing
the w1l channel depolarized to —20 mV for 50 ms. Two
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FIGURE 3 Convolution analysis of ul and p1-F1304Q at membrane
potential of —20 mV from a holding potential of —130 mV for ul1 and
—120 mV for u1-F1304Q. In the top row, 7, is the normalized open-time
histogram. In the middle row, f is the first latency density function. In the
bottom row, p is the open-channel probability computed as ensemble-
average current normalized by the unitary current, and 7, * f is the
convolution function.

gating modes, distinguished by the presence or absence of
bursting behavior at the beginning of the trace, were appar-
ent by inspection of the single-channel records. Because of
the variable length of the burst, parameters based simply on
mean open or closed times did not reliably discriminate
modes. Instead, a criterion was employed that specifically
detected bursts. Sweeps that contained a burst, defined as
three openings with a mean closed time of less than 1 ms,
were placed in the burst mode. Although it is not a unique
discriminator, this algorithm reliably sorted both the n1 and
the F1304Q channel activity. Fewer than 1% of sweeps
were misclassified by the algorithm based on visual inspec-
tion of the records. In Fig. 5 A the mean burst closed time
is shown for all sweeps with at least three openings; sweeps
with one or two openings were automatically assigned to
mode 1.

The initial 55 sweeps demonstrated primarily mode 2
bursting behavior, and the single-channel records from a
subset of these traces are shown in Fig. 5 B. The ensemble-
average current generated from all mode 2 sweeps activates
slowly and decays gradually. After a quiescent period, scat-
tered sweeps with multiple openings are seen and followed
by a gating change near sweep 225 to predominantly mode
1 behavior. Representative sweeps shown in Fig. 5 C dem-
onstrated that, in this mode, the w1 channel usually opens
only once before inactivating. The ensemble average of
mode 1 sweeps displayed a rapid rise and prompt decay of
current. ‘
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FIGURE 4 Mean open times (xSEM) as a function of membrane po-
tential for u1 and n1-F1304Q (N = 3 at each potential) determined from
open-time distributions fitted by single exponential functions. At each
potential positive to —0 mV, the mean open time for u1-F1304Q was
significantly prolonged (p < 0.05) relative to ul.

Examination of records from the F1304Q channel also
revealed two distinct gating modes, although neither resem-
bled the mode 1 gating seen in wild-type channels (Fig. 6A).
In the dominant mode, which comprised 85% of the sweeps
in this long run, the channel had a high open probability,
with discrete openings and closures that persisted to the end
of the sweep (Fig. 6 C). The second mode was a high
open-probability burst mode, characterized by rapid gating
transitions and a mean burst closed time of less than 1 ms
(as described above; Fig. 6 A and B). Typically, the burst
started immediately upon membrane depolarization and
later during the sweep switched to a low-activity nonburst
mode for the remainder of the 100-ms pulse.

Effect of coexpression of the g, subunit
with n1-F1304Q

In whole-cell recordings of the pl channel in Xenopus
oocytes, coexpression of the rat brain 3, subunit accelerates
the time courses of macroscopic activation and inactivation
(Isom et al., 1992; Cannon et al., 1993). To assess whether
the gating changes observed in the n1-F1304Q channel
might be produced by altered interaction with the 3; sub-
unit, we coexpressed these two subunits in oocytes at a
molar ratio of 1:1 (a:8,). Upon step depolarizations to —20
mV, the most striking change was a marked reduction in the
frequency of bursting mode sweeps relative to u1-F1304Q
expressed alone. During 1200 sweeps in a run from a
one-channel patch containing p1-F1304Q+ 8, channel gat-
ing consisted of discrete nonbursting openings and closures
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FIGURE 5 Modal gating in the u1 sodium channel. (4) A diary of the
mean burst closed time for the first two closures from sweeps having at
least three openings in a one-channel patch depolarized at a repetition rate
of 0.67 Hz from a holding potential of —120 mV to a test potential of —20
mV. A mean burst closing time of =1 m (vertical line) defines a mode 2
sweep. Sweeps with a longer mean burst closing time or with fewer than
three openings were defined as mode 1. (B) Representative single-channel
sweeps from mode 2 and the ensemble-average open probability. The
sweep number is indicated to the left of the tracing. The ensemble average
from this nondominant gating mode has a slowed decay of current. (C)
Representative sweeps from the dominant gating mode 1 and an ensemble-
average open probability generated from mode 1 sweeps. This ensemble
average demonstrates the rapid current decay seen in native wild-type
sodium channels.

for 98.8% of the sweeps (Fig. 7 A). Only rare scattered
sweeps displayed the rapid burst mode seen more com-
monly with w1-F1304Q expressed alone (Fig. 7 A, last
sweep). This behavior was observed in two additional
patches. The relative absence of bursting confirmed that the
B, subunit was being coexpressed.

We then considered whether, in addition to reducing the
frequency of the rapid burst mode, B, coexpression altered
the kinetics of the nonbursting mode. The mean open times
for the nonbursting w1-F1304Q+B,; channels (2.3 = 0.3
ms; N = 3) were slightly longer than those recorded in
nonbursting ©1-F1304Q channels (1.9 = 0.1 ms), but the
difference was not statistically significant (p > 0.05). The
ensemble current (Fig. 7 B) and the normalized first latency
histogram (Fig. 7 C) generated from the nonbursting u1-
F1304Q+ B, channels demonstrated an acceleration of ac-
tivation that is characteristic of B, coexpression with wild-
type sodium channel a subunits in oocytes (Isom et al.,
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FIGURE 6 Modal gating in the £1-F1304Q sodium channel. (A) A diary
of the mean burst closed time for the first two closures from sweeps having
at least three openings in a one-channel patch depolarized at a repetition
rate of 0.67 Hz from a holding potential of —120 mV to a test potential of
—20 mV. A mean burst closing time of =1 ms (vertical line) defines a
bursting mode sweep. The total number of sweeps was 1000; the diary
shows the first 350 sweeps to contrast with Fig. 5. (B) Selected consecutive
sweeps during the bursting mode. The sweep number is indicated to the left
of the tracing. The ensemble average was constructed from all bursting
mode sweeps in the run. (C) Selected consecutive sweeps during the
nonbursting mode. The ensemble average was constructed from all mode
1 sweeps.

1992; Cannon et al., 1993). In comparison with the ensem-
ble current for the nonbursting mode of n1-F1304Q (Fig.
7B, dashed curve), the time course of current decay for
11-F1304Q+B, is further slowed by B, coexpression.
These findings indicate that B, coexpression stabilizes the
dominant nonbursting mode of w1-F1304Q, accelerates ac-
tivation of the channel, and has modest effects on the decay
kinetics of ensemble currents. Therefore, the predominant
effect of the F1304Q mutation is a change in gating that
markedly slows macroscopic current decay independently
of interactions with the B, subunit.

Markov model for the u1 and the
p1-F1304Q channels

To gain further insight into the gating changes produced by
the w1-F1304Q mutation we derived rate constants for
multistate Markov models for w1 and for w1-F1304Q from
ensemble-average currents and single-channel data, using
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FIGURE 7 Coexpression of ©1-F1304Q and the B, subunit. (A) Repre-
sentative single-channel records from a one-channel patch depolarized at a
repetition rate of 0.67 Hz from a holding potential of —120 mV to a test
potential of —20 mV. The last sweep is one of only 15 of 1200 sweeps that
exhibited a high open probability burst mode. (B) Ensemble current gen-
erated from 1200 consecutive sweeps. The dashed curve is the model fit for
©1-F1304Q without B, coexpression. (C) First latency distribution for
nonbursting sweeps from this patch compared with that from a patch
containing w1-F1304Q alone. The data sets were normalized by removing
sweeps without openings to allow direct comparison of the times to first
openings.
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an iterative numerical approach. Inasmuch as the F1304Q
mutation is at a site believed to mediate fast inactivation of
the sodium channel, the gating model for the mutant channel
was configured to be identical to the wild-type model,
except for the rate constants to and from the fast-inactivated
state (I;). The models aimed to reproduce the dominant
nonbursting mode in both the p1 and the w1-F1304Q chan-
nels during step depolarizations to —20 mV. The gating
transitions in the bursting modes for both channels were not
well resolved, and therefore quantitative modeling of these
modes was not attempted. Because traces with burst activity
accounted for only 15% of the records in a long run, our
model reproduced the general behavior of the w1-F1304Q
channel independently of the modal gating.

The model was constrained by the following observations:
A single open state was defined because all open time histo-
grams were well fitted by single exponential functions. In
whole-cell recordings, decay of peak current and recovery
from inactivation curves are best fitted with a minimum of two
exponential functions, and therefore the model incorporated
two inactivated states (Ji et al., 1994; Brown et al., 1981;
Follmer et al., 1987). The measured mean open times at —20
mV (0.38 ms for n1 and 2.0 ms for n1-F1304Q) were used to
constrain the reciprocal of the sum of the rate constants leaving
the open state in the models (1/8 + l/kg + 1/k,).

With these conditions incorporated into the fitting al-
gorithm, the model and rate constants shown in Figs. 8 A
and B were generated; only the rate constants for entry to
and exit from OI, (k,, k,, k3, k,) were different for n1 and
for u1-F1304Q. This model closely reproduced the up-
stroke and the decay of peak current for both ul and
n1-F1304Q (Fig. 9 B, left and middle panels) and the
slower decay of current during the maintained plateau in
©1-F1304Q. The major differences between the currents
are the markedly faster current decay and the reduced
peak open probability for p1 relative to u1-F1304Q. One
can further understand these effects from the model by
reviewing the inactivation rate constants and the time
course of occupancy of the two inactivated states for each
of the channels. For ul, occupancy of both inactivated
states develops rapidly; at steady state, the OI, occu-
pancy is ~72% and the OI, occupancy is ~28% (Fig. 9
A, left panel). The higher on-rate for fast-inactivation
particle binding (k,) relative to slow-inactivation particle
binding (kg) accounts for the preference of OI,; rather
than OI,. For u1-F1304Q, k, is markedly slower (251 s™!
as opposed to 2533 s~! for u1) and k;, the rate constant
for unbinding of the fast inactivation particle, is acceler-
ated (165 s~! for u1-F1304Q and near zero for w1) such
that the on- and off-rates for binding of the fast-inacti-
vation particle are similar in magnitude. Thus, OI, is no
longer an absorbing state, and the channel readily re-
opens from it. This is consistent with the slow decay of
peak current in whole-cell recordings and with the mul-
tiple-channel reopenings observed in single-channel re-
cordings. Entry into OI, is slower for u1-F1304Q and
accounts for the prolongation of the mean open time.
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FIGURE 8 Markov models for the ul, nl1-F1304Q, and pl-
F1304Q+ B, sodium channels. (A) Schematic of the model with four
independent and identical gating sensors along the activation pathway and
two independent inactivation gating particles (OI, and OL,). (B) Rate
constants derived from best fits of the model to wl, wl1-F1304Q, and
r1-F1304Q+ B, ensemble currents at —20 mV.

Over time, channels gradually and progressively enter the
Ol, state, which has a lower on-rate (9.92 versus 251 s~ 1)
and an even lower off-rate (1.29 versus 165 s~ 1) relative
to OI,. Redistribution of channels into OI, from the OI,
and open states accounts for the gradual decay of the
n1-F1304Q ensemble-average current. The increase in
peak open probability seen in the wl1-F1304Q channel
develops as a consequence of decreased fast inactivation
(I,) from closed states relative to wl. The on-rate for
fast-inactivation particle binding to the Cs state (k,a®) is
26,947 s~! for ul and 87 s~! for w1-F1304Q. This
difference also accounts for the relative infrequency of
null sweeps in ©1-F1304Q channels.
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Markov model for the u1-F1304Q+ 3, channel

The primary effect of ; coexpression on wild-type wl
channels is to stabilize a nonbursting mode of the channel
(Zhou et al., 1991), an effect that we also observe when 3,
is coexpressed with w1-F1304Q. However, when only the
nonbursting sweeps were considered, [3; coexpression
caused acceleration of activation and slowed the decay of
the ensemble current. Because there was no significant
change in mean open time by 3, coexpression, we hypoth-
esize that the B, subunit has no direct influence on fast
inactivation of the w1-F1304Q channel. Therefore, we ap-
plied the previously described Markov model to fit the
ensemble current for the n1-F1304Q+ 3, channel, employ-
ing the rate constants for transitions involving the fast-
inactivated state (k,, k,, k3, and k,) that were derived for the
n1-F1304Q channel. The other rate constants were not
constrained other than by the mean open time for the chan-
nel at —20 mV. As shown in Fig. 9 B (right panel), the
minimized least-squares fit closely reproduced the rapid
activation of the u1-F1304Q+ B, channel, the initial rapid
decay of peak current, and the very slowly decaying plateau
current. Compared with the wl1-F1304Q model, coexpres-
sion of the 3, subunit increases rate constant « by 3.2-fold
to speed activation and reduces the ratio of rate constants
kg/k; from 7.7 to 0.4 to equilibrate more nearly the rates of
entry into and exit from the slow inactivated state (OL,). As
a result, at steady state, OI, is less absorbing and the decay
of ensemble current is slowed.

DISCUSSION

Fast inactivation of the voltage-gated sodium channel is
mediated by translocation of a segment of the intracellular
linker between homologous domains III and IV and subse-
quent binding to a site within the inner vestibule of the
channel. A triplet of hydrophobic amino acids (isoleucine—
phenylalanine-methionine) near the amino-terminal end of
this linker appears to form the blocking particle (West et al.,
1992). Mutation of any one of these three residues to a more
hydrophilic residue results in slowing of the decay of
whole-cell current. In the rat brain IIA sodium channel this
effect is most dramatic when the phenylalanine at position
1489 is modified. We studied a mutation (F1304Q) at the
analogous location in the wl rat skeletal muscle sodium
channel, using single-channel, cell-attached patch-clamp re-
cordings in Xenopus oocytes to define the changes in gating
that are responsible for delayed inactivation of whole-cell
currents.

As expected from its location on the cytoplasmic side of
the channel, the 11-F1304Q mutation does not alter unitary
current amplitude or slope conductance and thus does not
have a significant effect on permeation properties. The
changes in gating, however, are readily apparent from in-
spection of single-channel records. The w1-F1304Q cur-
rents have longer openings and more frequent reopenings at
membrane potentials above —60 mV relative to wild-type
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FIGURE 9 State occupancy and fit of Markov models to data. (A) Time course of occupancy of the open and inactivated states for 1, 1-F1304Q, and
©1-F1304Q+ B,. (B) Ensemble-average open probabilities (symbols) and predicted curves from the Markov model (curves). The data include only the

dominant nonburst mode sweeps.

currents. In the wild-type sodium channel, mean open time
progressively lengthens as membrane potential becomes
more depolarized up to approximately 0 mV but then short-
ens at more positive test potentials (Fig. 4). This biphasic
voltage dependence of mean open time is absent in wl-
F1304Q. The delay in inactivation in p1-F1304Q results
primarily from frequent reopenings of the channel. Both the
wild-type and the mutant channels exhibited a dominant
gating mode with well-resolved openings and a less fre-
quent gating mode characterized by high open-probability
bursts with poorly resolved openings. The two modes were
distinguished by the presence or absence of an initial burst
of three openings separated by closed times of less than 1.0
ms.

We predicted that the composite changes in gating pro-
duced by the F1304Q mutation could be attributed to a
selective modification of fast inactivation rather than to a
more global change in kinetics, altered modal gating, or a
change in the interaction between the a and 8; subunits.
Slowed entry into an inactivated state from the open state
would prolong open times, and this effect would be more
pronounced at positive membrane potentials, where channel
openings are increasingly terminated by transitions to an
absorbing inactivated state (Yue et al., 1989; Scanley et al.,
1990; Berman et al., 1990). Transitions from inactivated
states back to the open state, as a result of defective inac-
tivation, could account for the increased frequency of re-
openings and the delayed decay of macroscopic current. To
test this hypothesis we developed a model (Tomaselli et al.,
1995) similar to that described by Kuo and Bean (1994) for

neuronal sodium channels. Our model includes a second
inactivation particle because recovery from inactivation is
described by at least two time constants (Ji et al., 1994;
Brown et al., 1981; Follmer et al., 1987). Constrained only
by mean open-time measurements, the model was chal-
lenged to fit simultaneously ensemble-average currents
from pl and p1-F1304Q at —20 mV. All rate constants,
except those to and from the OI, state, were identical. As
shown in Fig. 9, the model closely reproduced both the
activation and the inactivation kinetics for nwl and pl-
F1304Q. As has been observed for mutations at analogous
positions in the rat brain (rBIIA) and human heart (hH1)
sodium channels, the F1304Q mutation in skeletal muscle
sodium channels has no effect on the activation pathway
(West et al., 1992; Hartmann et al., 1994).

Coexpression of wl1-F1304Q+ B, stabilized the dominant
nonbursting mode and accelerated activation of the channel.
The ensemble behavior of these patches was consistent with
that observed in whole-cell experiments, and we believe that
our limited single-channel data with B, coexpression are
valid and complementary to the data for the a subunit
expressed alone. Mean open times were not significantly
changed by B, coexpression, and the 11-F1304Q model rate
constants to and from the fast-inactivated state (Ol;) could
be directly inserted into the model for ul1-F1304Q+p;.
Therefore the changes in fast inactivation attributed to the
F1304Q mutation appear to be independent of any altered
interaction between the a and B, subunits. The further
slowing of decay with B, coexpression was simulated by a
modification in the OI, slow-inactivation rate constants.
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Changes in these slow transitions have a relatively minor
influence on the mean open time, as we observed experi-
mentally.

The slowed decay of macroscopic current, the increased
mean open time, and the more frequent reopenings observed
in u1-F1304Q than in w1 single-channel recordings can be
explained by a selective effect on fast inactivation. This
suggests that the gate remains intact and retains the ability
to occlude the pore but forms a less-stable hydrophobic
interaction with its docking site because of the replacement
of phenylalanine by a hydrophilic residue. Rather than be-
ing absorbing, the OI, state in wl-F1304Q is one from
which the channel readily reopens. Not only does the inac-
tivation gate bind less avidly but the on-rate constant for the
O-t0-Ol, transition (k,) is more than an order of magnitude
slower than that for the wl channel. These observations
reinforce the notion that the w1-F1304Q channel is inacti-
vation defective rather than inactivation deficient. Transi-
tions to and from OI, do not appear to be influenced by the
F1304Q mutation during mode 1 gating. Therefore, slow
inactivation remains intact, and gradual occupancy of this
absorbing state accounts for the slow, steady decay of
macroscopic current. Similar changes in the rate constants
to inactivated states have been seen with an F~Q mutation at
an analogous site in the human heart (hH1) channel (Hart-
mann et al.,, 1994). Although it is qualitatively similar to
ours, this model incorporated two serial inactivated states
rather than two independent inactivation particles, was not
constrained by single-channel data, and did not examine the
influence of $; subunit coexpression. Furthermore, modal
gating that has been observed prominently in rat brain
sodium channels (Moorman et al., 1990) and skeletal mus-
cle (Zhou et al., 1991; Ji et al., 1994) was not observed in
the human heart sodium channels with the F-Q mutation
(Hartmann et al., 1994). Nevertheless, such channels clearly
exhibit modal gating with other mutations in the III-IV
linker (Bennett et al., 1995). Mutations, such as ul-
F1304Q, that involve the IFM cluster selectively modify
fast inactivation without altering activation kinetics. This
occurs presumably by influencing only the hydrophobic
interaction of the inactivation particle with its receptor and
suggests that the basic molecular mechanism underlying
fast inactivation is extremely well conserved across the
family of voltage-gated sodium channels.
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