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Quasiperiodicity Route to Chaos in a Biochemical System
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ABSTRACT The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a
quasiperiodicity route to chaos. When the delay changes in our biochemical system, we can observe the emergence of a
strange attractor that replaces a previous torus. This behavior happens both under a constant input flux and when the
frequency of the periodic substrate input flux changes. The results obtained under periodic input flux are in agreement with
experimental observations.

INTRODUCTION

Transitions to chaos in dissipative systems differ in the way
in which the signal behaves before becoming completely
chaotic. As a first approximation to the true variety of
transition scenarios, three classical approaches to chaos may
be considered. The best known is Feigenbaum's route
(1978) generated by pitchfork bifurcations, which relates
the emergence of new periodic behavior by period doubling
to a universal law of functional composition.

Another approach to chaos is the so-called intermittency
route (Pomeau and Manneville, 1979). In this case the
signal alternates randomly between a regular regime and
irregular bursts. The average number of these irregular
bursts may be increased through the variation of an external
control parameter until the signal becomes completely cha-
otic. This behavior has been observed previously in our
biochemical system (de la Fuente et al., 1996).

This process offers a continuous route from regular to
chaotic motion (Schuster, 1984): the system passes from
periodic oscillation to a chaotic system of motion without
developing the Feigenbaum cascade of period-doubling bi-
furcations (Feigenbaum, 1978).
A third possibility is the Ruelle-Takens-Newhouse route

(Ruelle and Takens, 1971; Newhouse et al., 1978). They
have showed that by means of two Hopf bifurcations, reg-
ular motion may become highly unstable and be replaced by
a strange attractor. For a given value of the control param-
eter a first Hopf bifurcation generates a limit cycle from a
fixed point. A second Hopf bifurcation intruduces a new
fundamental frequency (w2) into the system. In this condi-
tion the trajectory can explore additional dimensions that
correspond to a trajectory on a torus. When the quotient
wI/w2 is rational, the trajectory closes after one cycle and is
periodic. When w1/w2 is irrational, the motion is quasiperi-
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odic, i.e., the trajectory never closes and covers the whole
torus. The increment of the control parameter through an-
other bifurcation value is followed by the destruction of the
torus and the emergence of a strange attractor. The quasi-
periodicity route to chaos is well verified experimentally in
chemical systems (Dubois et al., 1982; Hudson et al., 1989;
Scott, 1991).

Quasiperiodic behavior and chaos in the glycolytic sub-
system have been observed by measuring the NADH fluo-
rescence of glycolyzing yeast extracts under sinusoidal glu-
cose input flux (Hess et al., 1990). Indeed, quasiperiodicity
is obtained at low amplitudes of the input flux (Richter and
Ross, 1980; Markus et al., 1985b), and chaos is obtained at
high amplitudes of the input flux and for input frequencies
between 2 and 3 times the frequency of the autonomous
oscillations (Hess et al., 1984; Markus et al., 1985a).

In this paper we analyze the solutions of a glycolytic
model formed by a system of three functional differential
equations with delay (De la Fuente et al., 1995). Our results
reveal the phenomenon of a quasiperiodicity route to chaos.
When the delay changes in our biochemical system, we

can observe the emergence of a strange attractor that re-
places a previous torus. This behavior happens both under a
constant input flux and when the frequency of the periodic
substrate input flux changes. The results obtained under
periodic input flux are in agreement with experimental
observations.

THE MODEL

In the present work we have used a model that represents a
multienzymatic instability-generating reactive system with
the enzymes arranged in series (Fig. 1). As shown in the
diagram, the metabolite S is transformed by the first enzyme
E1 into the product PI. The enzymes E2 and E3 are alloste-
ric, and transform the substrates P1 and P' into the products
P2 and P3, respectively. The step P2-->P' represents a
particular catalytic activity, which is reflected in the dynam-
ical system by means of the functional variable f3'.
The time evolution of a, 13, and y, which denote the

normalized concentrations of PI, P2, and P3, is governed by
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FIGURE 1 The multienzymatic instability-generating reactive system.

the following three delay differential equations:

da
dt = z1o,A1(D ) -2'oA2(a, -qa,

dt3
dy= Z2o232(, ) O-303(jO, /3', 4,

dy
dt= z3o3(13,3', /L))-q2y

Here

4', = ASKD3/(K3K2 + pKmIKD3 + SK2 + ILSKDO),
a(1 + a)(1 + di(3)2

D2 = L1(1 + ca)2 + (1 + a)2(1 + di)
d2f3'(1 + d2f')3

=3 L2(1 + d3/)4 + (1 + d2')4'

where

(' =fQ(3(t - A1)),
p.= h(y(t - A2)),

The various parameters, besides the constant input S and
the sink constants qI and q2, are related to the kinetic
properties of the enzymes hexokinase, phosphofructokinase,
and pyruvate kinase (Table 1; see de la Fuente et al., 1995,
for further details).

In the aforementioned reference we studied by means of
the functional variables ,u and ,B' the consequences that
phasic changes in the oscillations of the concentrations of
metabolite ATP and phosphoenolpyruvate have on the be-
havior of the integral solutions of the dynamical system.

TABLE I Parameters

Parameter Values Parameter Values

., 0.215 s-1 C 10-5
O02 4 s-' q, 8 X 10-4
Cr3 0.76 s-1 S 2 X 10-3 M
Z, 2 LI 6 X 105
2 ~ 1.5 L2 103
Z3 1 K2 6.3 X 10-5 M
d, 0.85 K3 10-4 M
d2 1 Km. 10-4 M
d3 5 x 10-3 KD3 2.9 X 10-5 M

RESULTS

First of all, we have assumed that the system is under
constant input.
The calculations of the obtained oscillations have delay

times A1 = 7, and A2 = 130. The initial functions present the
following simple harmonic oscillation:

ao(t) = 26 + 12 sin(2-ir/P)

/30(t) = 12 + 10 sin(2-i/P)
yo(t) = 7 + 6 sin(2iir/P)

P = 534.

The functions of the functional variables are supposed to
be linear, with K = 1.

f(/, t - Aj) = K/3(t - A1)

h(y, t -A2) = KY(t - A2).

We have fixed the remaining parameters as described in our
aforementioned reference.
Under these conditions, the numerical integration reveals

that the temporal structure of the system presents a stable
steady state for q2 = 0.11. For q2 = 0.103, a first Hopf
bifurcation generates a periodic behavior (Fig. 2 a). Above
q2 = 0.099, a second Hopf bifurcation introduces a new

fundamental frequency and the system motion becames
quasiperiodic (Fig. 2 b and 3). The torus becomes more
complex for q2 = 0.096 (Fig. 2 c). And for q2 = 0.095,
complex substructures can be observed, which shows the
destruction of the torus (Fig. 2 d) and its replacement by a
strange attractor, q2 = 0.093 (Fig. 2 e).

In Fig. 2 we show five time series for different values of
q2, along with their power spectra and the Poincare sections
of each attractor. In that way, the power spectra display a
clear transition from one to two fundamental frequencies
and then to chaos. We can see in Fig. 2 f a periodic
movement with one frequency; in Fig. 2, g-i, a quasiperi-
odic motion with two incommensurate frecuencies and their
linear combinations; and finally chaotic motion in Fig. 2 j.
In Fig. 2, h and i, the Poincare sections show the torus
break-up, which develops a strange attractor as predicted
by Newhouse, Ruelle, and Takens. Under these conditions,
the system presents a route to chaos via quasiperiodicity
and does not pass through a cascade of period-doubling
bifurcations.

Chaotic dynamics via torus have been described for ex-
perimental glycolytic oscillations under a periodic source of
glucose (Hess et al., 1984; Markus et al., 1985a; Hess et al.,
1990). To simulate these experimental observations, our
system was induced to oscillate under the following sinu-
soidal source of substrate injection: S = S' + A sin wt,
where S' is the mean input flux, and A and w are the
amplitude and the frequency of the periodic input flux.
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FIGURE 2 Oscillatory behaviors
under constant substrate input flux,
along with the corresponding Poin-
car6 sections and power spectra
showing a transition sequence from
periodicity to chaos through quasi-
periodicity. (a) Periodic behavior.
(b-c) Quasiperiodic motion. (d)
Complex quasiperiodic motion with
substructures indicating the destruc-
tion of the torus. (e) Chaotic behav-
ior. The first figure (a-e) in each row
represents ,3 as a function of time; the
second figure is the Poincar6 section
(a, f3 plane), and the third (f-j) is the
power spectrum of the oscillations.
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FIGURE 3 Quasiperiodic attractors un-
der constant substrate input flux. Torus for
q2 = 0.099 (y in abscissas and a in ordi-
nates).
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However, under periodic perturbation for T = 80 s and
a TTrT= 1.15 A = 0.057, the limit cycle experiments a Hopf bifurcation

and the oscillation becomes quasiperiodic, with TJT = 1.15
(Fig. 4 a).
Under constant input flux, the amplitude of oscillations

increases. Under these conditions, with sinusoidal glucose
input flux, we find quasiperiodic behavior for different

b TJT=I 3 values of the period excitation T. Fig. 4, b-d, shows three
tori along with their Poincare sections for the following
conditions: b: q2 = 0.09, T= 84, T/T= 1.3; c: q2 = 0.08,
T = 224, TJT = 2.3; d: q2 = 0.08, T= 208, TJT = 2.8.

In Table 2 we show quasiperiodic behaviors for different
values of A and so when the sink constant is q2 = 0.08 (A is
the amplitude of the input flux, which is normalized here

c TJ/T=2.3 with respect to the mean input flux Vin co is the frequency
of the input flux, which is normalized with respect to the
frequency obtained co at constant input flux.)

Experimentally the chaotic behavior appears when the
frequency of the periodic sustrate is between 2 and 3 times
the frequency of the autonomous oscillation and for an

d TJT=2 .8 increment of amplitude of the input flux (Hess et al., 1984;
Markus et al., 1985a). According to these results, in our
model the emergence of a strange attractor may be observed
for the conditions q2 = 0.08 and T = 208 (TO/T = 2.8) when
the input flux amplitude is incremented from S = 0.06 +

\ i)c3 0.057 sin cwt (Fig. 4 d) to S = 0.06 + 0.059 sin cot (Fig. 4 e).

e T0/T ~~~~~~DISCUSSION
The dynamical modeling of a dissipative enzymatic system,
formed by a system of three functional differential equa-
tions with delay, allows us to observe a "complete" transi-

__________ otion sequence from a stable steady state to periodicity,
quasiperiodicity, and chaos.

FIGURE 4 Theoretically obtained oscillatory responses of glycolysis The numerical results for our theoretical model show that
under periodic substrate input flux. Five attractors are displayed along with the described biochemical system may display this complex
their Poincare sections. (a-d) Quasiperiodic motion for different values of
TOIT. (e) The quasiperiodic motion in d is replaced by chaos when the
system experiments an increment of amplitude of the input flux. The first
figure in each row is the attractor in a,,B coodinates, and the second figure TABLE 2 Quasiperiodic behaviors for different values of A
is the Poincare section in the a,,3 plane. and

t

A/Vin a/w0 T(s) A(s ')

0.05 1.15 507 0.003
These parameters are normalized (as described in de la 0.1 1.3 448 0.006

Fuente et al., 1995) by dividing them by Km2 = 5 X 10-5 0.2 1.3 448 0.012
M, the Michaelis constant of phosphofructokinase for fruc- 0.1 1.4 416 0.006
tose 6-phosphate (Bartrons et al., 1982). 0.2 1.6 364 0.006
Assuming S = 12 mM/h (Markus et al., 1984), we obtain 0.1 1.9 307 0.006

the normalized input fluxS' = 0.06 s 1, and the sinusoidal 0.3 1.9 307 0.018
expression for the input is S = 0.06 + A sin ct. The values 0.5 1.9 307 0.03
of the other parameters are A, = 7 and A2 = 50. 0.1 2.2 265 0.006

Under a periodic input flux condition, the temporal struc- 0.2 2.2 265 0.012
ture of the system reveals a rich variety of time patterns, 0.1 2.4 243 0.006
including quasiperiodic oscillations and chaos. 0.2 2.4 243 0.012

In the absence of periodic excitation for S = 0.06 and 0.1 2.8 208 0.006
q2= 0.1, the dynamical system has an asymptotically stable 0.3 2.8 208 0.018
solution with a period To = 91.8 s. __ _ _ 2_8 _208_0_03
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FIGURE 5 Experimentally predicted
excitation diagram of glycolysis under pe- .9 1i 1 i 1 222 c
riodic input flux (Hess et al., 1990). A is
the amplitude of the input flux, which is .1
normalized with respect to the mean input *1 2
flux Vi, (in ordinates). we is the frequency 1.C
of the input flux, and wo is the frequency *1 *4
obtained at constant input flux (in abcis- 0.5 5 / 5
sas). QP, quasiperiodicity; C, chaos. Dif- | ||
ferent quasiperiodic behaviors emerge for QP Qp 7x /
1 <T/T < 3, and the chaos arises for / 2
2.5 < T./T < 3 at high amplitudes of the / /5 QP
input flux. Crosses show the values of I I l5QP
quasiperiodic behaviors obtained with our / x x x 2 QP xQ x
model (Table 2). 0..X QP P

1 1.5 2 2.5 3 (e

dynamical behavior both under constant substrate input flux
and under periodic perturbations.
As we have indicated before, quasiperiodic behavior and

chaos in the glycolytic subsystem have been observed by
measuring the NADH fluorescence of glycolyzing yeast
extracts under sinusoidal glucose input flux (Fig. 5; Hess et
al., 1990). In these experiments the response of the system
through a periodic source of substrate seems to depend on
the magnitude of the period T of the input relative to the
autonomous period To of the system at constant input flux.
In this way, quasiperiodicity is obtained at low amplitudes
of the input flux for 1 < TO/T < 3 (Richter and Ross 1980;
Markus et al., 1985b; Hess et al., 1990), and chaos is
obtained at high amplitudes of the input flux at input fre-
quencies between 2 and 3 times the frequency of the auton-
omous oscillations for 2.5 < TO/T < 3 (Hess et al., 1984,
1990; Markus et al., 1985a).

In our model the different quasiperiodic behaviors
emerge for 1 < TO/T < 3 (Table 2), and the chaos via
quasiperiodicity arises at high amplitude of the input flux
for T. = 240 s, the quotient TO/T being 2.8.
We can conclude, therefore, that the theoretically ob-

tained quasiperiodic oscillatory responses of glycolysis un-
der periodic substrate input flux are within the range of
experimental values (Fig. 5).

Because knowledge of biochemical oscillations is still
limited, it is necessary to continue with the theoretical and
experimental research in this field.

REFERENCES

Bartrons, R., E. Schaftingen, S. Vissers, and H. Hers. 1982. The stimula-
tion of yeast phosphofructokinase by fructose 2,6-bisphosfate. FEBS
Lett. 143:137-140.

De la Fuente, M. I., L. Martinez, and J. Veguillas. 1995. Dynamic behavior
in glycolytic oscillations with phase shifts. Biosystems. 35:1-13.

De la Fuente, M. I., L. Martinez, and J. Veguillas. 1996. Intermittency
route to chaos in a biochemical system. Biosystems. 39:87-92.

Dubois, M., P. Berg6, and V. Croquette. 1982. Study of the steady con-
vective regimes using Poincare sections. J. Physiol. (Paris) Lett. 43:
L295.

Feigenbaum, M. J. 1978. Quantitative universality for a class of nonlinear
transformations. J. Stat. Phys. 19:25-52.

Hess, B., D. Kuschmitz, and M. Markus. 1984. Dynamics of Biochemical
Systems. J. Ricard and A. Cornish-Bowden, editors. Plenum Publishing,
New York.

Hess, B., M. Markus, S. C. Muiler, and T. Plesser. 1990. From homogeneity
towards the anatomy of a chemical spiral. In Spatial Inhomogeneities
and Transient Behavior in Chemical Kinetics. P. Gray, G. Nicolis, F
Baras, P. Borckmans, and S. K. Scott, editors. Manchester University
Press, Manchester, England.

Hudson, J. L., J. C. Bell, and N. I. Jaeger. 1989. Potentiostatic curreni
oscillations of cobalt electrodes in hydrochloric acid/chromic acid elec-
trolytes. Ber. Bunsen-Ges. Phys. Chem. 92:1383-1387.

Markus, M., D. Kuschmitz, and B. Hess. 1984. Chaotic dynamics in yeasi
glycolysis under periodic substrate input flux. FEBS Lett. 172:235-238

Markus, M., D. Kuschmitz, and B. Hess. 1985a. Properties of strange
attractors in yeast glycolysis. Biophys. Chem. 22:95.

Markus, M., S. C. Muler, and B. Hess. 1985b. Observation of entrainmeni
quasiperiodicity and chaos in glycolyzing yeast extracts under periodic
glucose input. Ber. Bunsen-Ges. Phys. Chem. 89:651.

Newhouse, S., D. Ruelle, and F. Takens. 1978. Occurrence of strange
axiom-A attractors near quasiperiodic flow on 7, m > 3. Commun.
Math. Phys. 64:35-44.

Pomeau, Y., and P. Manneville. 1979. Intrinsic Stochasticity in Plasmas,
Ed. de Pysique, Orsay.

Richter, P. H., and J. Ross. 1980. Oscillations and efficiency in glycolysis.
Biophys. Chem. 12:285.

Ruelle, D., and F. Takens. 1971. On the nature of turbulence. Commun.
Math. Phys. 20:167-172.

Schuster, H. G. 1984. Deterministic Chaos. Physic-Verlag, Weinheim.
Scott, S. 1991. Chemical Chaos. Claredon Press, Oxford.


