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Spontaneous Action Potentials due to Channel Fluctuations

Carson C. Chow* and John A. White#
*NeuroMuscular Research Center and #Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215 USA

ABSTRACT A theoretical and numerical analysis of the Hodgkin-Huxley equations with the inclusion of stochastic channel
dynamics is presented. It is shown that the system can be approximated by a one-dimensional bistable Langevin equation.
Spontaneous action potentials can arise from the channel fluctuations and are analogous to escape by a particle over a
potential barrier. The mean firing rate can be calculated using Kramers' classic result for barrier escape. The probability
density function of the interspike intervals can also be estimated. The analytical results compare favorably with numerical
simulations of the complete stochastic system.

INTRODUCTION

Neuronal action potentials, generated by the concerted ac-
tions of populations of ion channels, can typically be mod-
eled with great success using some variant of the classic
phenomenological model of Hodgkin and Huxley (1952).
However, individual ion channels are probabilistic devices
(Hille, 1992), and recent work indicates that fluctuations in
the states of these devices may be physiologically important
in small neuronal structures like nodes of Ranvier (see, e.g.,
Skaugen and Wall0e, 1979; Sigworth, 1980; Strassberg and
De Felice, 1993; Rubinstein, 1995).

Here, we study the generation of noise-induced action
potentials due to ion channel fluctuations analytically and
numerically. Previously, it had been demonstrated that the
Hodgkin-Huxley model with discrete Markovian ion kinet-
ics instead of the usual continuous rate equations can lead to
spontaneous generation of action potentials (Lecar and Nos-
sal, 1971b; Skaugen and Wall0e, 1979; Strassberg and De
Felice, 1993, De Felice and Goolsby, 1996). Numerical
simulations show that as the membrane area (number of ion
channels) is reduced, spontaneous firing can occur for a
subthreshold injected current. The firing arises entirely from
stochastic fluctuations of the ion channels. The spontaneous
firing rate decreases as the number of ion channels in-
creases. There is a critical channel number where the spon-
taneous action potentials cease to exist. It is of interest to
understand these effects theoretically.
A comprehensive theoretical study of spontaneous firing

due to noise was done by Lecar and Nossal (1971a, 1971b)
by linearizing around the threshold. More recently, a de-
tailed stochastic analysis of the Hodgkin-Huxley system
with random Markovian ion kinetics was performed by Fox
and Lu (1994) where it was shown how the membrane
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dynamics converges to a deterministic limit as the number
of ion channels increases. In this study, we retain the es-
sential nonlinearity of the membrane to obtain a closed-
form expression for the firing rate of spontaneous action
potentials for subthreshold input. We find that it has a
negative exponential dependence with the number of ion
channels. The characteristic channel number is given by the
parameters of the Hodgkin-Huxley equation. We also show
that the distribution of the spontaneous interspike intervals
approximately obeys a displaced negative exponential dis-
tribution with a characteristic time scale given by the mean
firing rate. The theory can be generalized to other mem-
brane equations to give a reasonable estimate of when
discrete ion effects are important. To corroborate our ana-
lytical results we have conducted numerical simulations.
Using an efficient algorithm, we performed high-precision
simulations of the stochastic Hodgkin-Huxley system, in-
cluding probabilistic descriptions of Na+ channel activation
and inactivation, as well as K+ channel activation. We find
that simulated results match with the analytical results.

MEMBRANE DYNAMICS

The membrane equation of the Hodgkin-Huxley model de-
scribing the squid giant axon is given by (Hodgkin and
Huxley, 1952)

dV
C dt = -[gL(V - VL) + gK(V - VK) + gNa(V - VNa) - I],

(1)
where V is the membrane potential, VL is the resting leakage
potential for a leakage conductance gL, VK and VNa are the
potassium and sodium reversal or Nernst potentials, C is the
capacitance and I is an injected current. The classic values
of these parameters used by Hodgkin and Huxley (1952) for
a temperature of 6.3°C is shown in Table 1 (note that the
modem convention for membrane potential is used). The
voltage-dependent membrane conductances for the potas-
sium and sodium channels are given by

QK - QNa
=K gKNK' gNa =gNa N (2)
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TABLE I Parameters used in the theory and simulations

C Membrane capacitance 1 AF/cm2
VL Leakage reversal potential -54.4 mV
gL Leakage conductance 0.3 mS/cm2
VK Potassium reversal potential -77 mV
gK Maximal potassium conductance 36 mS/cm2
PK Potassium ion channel density 18 channels/jxm2
NK Number of potassium channels
Nnk Number of potassium channels in state nk
VNa Sodium reversal potential 50 mV
gNa Maximal sodium conductance 120 mS/cm2
PNa Sodium ion channel density 60 channels/,um2
NNa Number of sodium channels

Nmihj Number of sodium channels in state mihj

where m3h1 corresponds to the open state where the three
activating m gates and the inactivating h gate are open.

For the classic parameters of Table 1 the voltage-depen-
dent rate constants have the form

0.0l(V + 55)
an= e(V+55)/1O 13n = 0.125e-

O.1I(V±+ 40) V6)1
am = 1 -(V+40)/1O' 13m = 4e-

ah = 0.07e-(V+65)/2 Ph = 1 + e-(V+35)/10

(5)

(6)

(7)

where QK and QNa are the number of "open" potassium and
sodium channels; NK and NNa are the total number of
potassium channels, given by the equations NK = PK x Area,
and NNa = PNa X Area, where PK and PNa are the K+ and Na+
channel densities, respectively; and gK and gNa give the max-
imum conductance densities when all the channels are open.

Hodgkin and Huxley (1952) found that the electrical
properties of the squid giant axon were well modeled by
considering conductance to be governed by the states of a
finite number of independent binary "gates." In the modern
view, one could consider these gates to be relevant at the
single channel level. A given channel would only conduct
when all of its composite gates were in the open position. In
this scheme, the potassium channel is composed of four
identical gates, while the sodium channel is composed of
three identical "activating" gates and one "inactivating"
gate. The opening and closing of these gates are inherently
probabilistic. In classical analyses of voltage-clamp data,
only the mean values of the fraction of open channels are
considered. This is a valid approximation for large numbers
of channels in a large patch of membrane. However, for a
small patch, statistical fluctuations will play a role.
Assuming a simple Markov process for four identical

gates with an opening rate an and a closing rate of o3n, the
kinetic scheme for the potassium channel is given by (Skau-
gen and Wall0e, 1979; Hille, 1992; Strassberg and De
Felice, 1993)

where V has units of mV and the rates have units of ms-1.
In the continuous limit for the classic Hodgkin-Huxley

equations, the conductances satisfy

gK = gKn gNa = gNamh, (8)
where

dn
-= an(l -n)- gnn,

dm
dt = am(I -m) - Pmm,dt

dh
-=-ah(l -h)-P3hh.dt

(9)

(10)

(11)

Here m, h, and n are mean gate fractions.
For a fixed membrane potential these equations approach

steady-state rest values of

n(V) = n,(V) = n

am
m(V) =m (V) am + Pm

ahh(V)= h.m(V-ah+Ph'

(12)

(13)

(14)

4an 3an 2an an

no > ' n I ~ n2----fn3 > n4, (3)
13n 29n 31n 4fn

where n4 corresponds to the open state where all four gates
are open. The Markov kinetic scheme for the Na+ channel
is given by

3am 2am am

m0h1 m1h1 > m2h1 m3hl
g3m 2pm 33m

ah TIPh ah UjPh ah TPPh ah T |Ph (4)

3am 2am am

moho > mlho ' m2ho 'MO=
gm 29m 39m

STOCHASTIC THEORY

We want to analyze Eq. 1 with channel kinetics given by the
Markov schemes Eqs. 3 and 4 for subthreshold current
injection. In particular we wish to examine the generation of
spontaneous action potentials due to the fluctuations in the
ion channels. Our strategy is to coarse-grain the problem
into a continuous time stochastic problem. We will trans-

form the membrane equation into a Langevin equation. The
probabilistic nature of the channels will appear as a noise
source in the stochastic equation. This will then be analyzed
using standard techniques of nonequilibrium statistical me-

chanics. We will then compare with numerical simulations.
Our analysis depends on the separation of time scales

present in the dynamics. We will use approximations that
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Spontaneous Action Potentials

are similar to those used by Lecar and Nossal (1971a). For
a subthreshold injected current the membrane potential is at
rest at V = Vr. A characteristic time scale can be estimated
by linearizing Eq. 1 around the resting potential. Similarly,
a characteristic time scale for the currents can be estimated
from the kinetic schemes (Eqs. 3 and 4) as well as the
deterministic current equations (9-11). The characteristic
time scales are given by T = (ai + 3i)- , where i = m, h,
n. These time scales are dependent on the parameters used.

For the parameters of Table 1 and zero injected current
(I = 0), the resting membrane voltage is V = Vr --65 mV.
At rest, Eq. 1 linearizes to V - -0.7V, implying a time
constant of 1.4 ms. The time constants of the m, h, and n
currents have the values Tm - 0.24 ms, Th - 8.3 ms and -Tr
- 5.6 ms, respectively. For these parameters, the sodium
activation current m has a faster time scale than the mem-
brane potential V, which in turn is faster than the currents h
and n. An assessment of the time scale separation is given
in the Discussion section.

Thus, in the first approximation, the potassium n and the
sodium h gate fractions can be considered fixed around their
resting values with respect to the membrane potential. It is
assumed that the fluctuations of these currents do not play a
role in the activation of action potentials. The membrane
potential can be considered fixed in the rate constants gov-
erning the m current. These assumptions can be checked for
self-consistency later. This simplifies the problem greatly.
The conductances from Eq. 2 become

given by the steady-state fraction m, given by Eq. 13. The
probability for all three gates to be open is m3, since the
gates are independent. Thus the mean of m3 is given by

(m3) = moo. (18)

For the calculation of the covariance, we first consider a
single channel comprised of three identical gates. The co-
variance of the open state is given by [4(t - t') + m2]3
m6, where 4(t - t') = m.(I - m.) exp{-(a + 13)It - t'j}
is the covariance of a single gate in the open state (Conti and
Wanke, 1975). For an ensemble of NNa channels this yields

(Am3(t)Am3(t')) = [[m-(1 - m) exp{-(a + 3)jt - t'l}
+ m2 3 _ m6]N-. (19)

Setting t = t' in Eq. 19 yields (Am2) = m3(1 -m3)NN,
which is the expected static variance of a binomial distri-
bution (Lecar and Nossal, 197 lb; Tuckwell, 1989). Thus the
stochastic variable m3(V, t) can be represented by m3(t) =
(M3) + 8m3(t), where 6m3 is a stochastic variable with zero
mean and a variance given by Eq. 19.
From Eq. 19 we find that the decay time of the correla-

tions is less than (am + 13m)-. This is a much faster time
scale than the membrane response time near resting poten-
tial. Hence we further approximate the covariance of the
stochastic noise by

(SiM3(t)6m3(t')) 2D(V)NNafi(t -t'),

(15) where

gNa = gNahrtn3(V, t), (16)

where nr = noo(Vr) and hr = ho(Vr) (given by Eq. 12 and Eq.
14) and m3 represents the fraction of open m states. The n

and h channel dynamics are "frozen out." This approxima-
tion leads to a reduced kinetic scheme for the m current:

3am 2am am

mO( -Ml m2 (17)
f6 20m 3)3m

2D(V) = NNaJ (Am3(t)Am3(0)) dt (21)
J-oo

3 l18a,; + 9a!m|m + 2|-m\
=mP( -m,x)( 31(am + m'3n23 (22)

Due to stationarity, the covariance is invariant to a transla-
tion in time so t' can be set to zero in the integral without
loss of generality. The sodium conductance (16) becomes

In this approximation the membrane equation (1) is forced
by the stationary stochastic variable m3(V). To characterize
the stochastic dynamics of M3 we require the mean (m3(V, t))
and covariance (Am3(V, t)Am3(V, t')), where Am3(V, t) =
m3(V, t) - (M3). The angled brackets represent ensemble
averages over the distribution.
The statistical properties of M3 are readily found for

voltage-clamped conditions, where V is fixed. This assump-

tion is based on the separation of time scales between the
dynamics of the m variable and the membrane potential. Its
validity will be assessed in the Discussion. The kinetic
scheme Eq. 17 describes the activity of a channel compris-
ing of three identical gates with opening rate am and closing
rate S3m. We require the mean and covariance of the fraction
or probability of having three open gates for an ensemble of
NNa channels. The probability of one m gate being open is

gNa = gNahr[mO(O) + Dl12(V)NNa2i1(t)]

where 7q(t) is a stochastic variable with statistics

(71(t)) = 0, (-q(t)r1(t')) = 25(t- t').

(23)

(24)

It should be noted that the rate constants am and 13m remain
functions of the membrane potential V.

Substituting Eq. 23 and Eq. 15 into Eq. 1 yields

dV
C- = g(V/) +f(V)N -'271(t),

where

g(V) = -[gL(V VL) + gKnr(V- VK)

+ gNahrMi(V)(V - VNa)],

(26)

-4
gK gKnr

(20)
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f(V) gNahr(V - VNa)D 2(V). (27) where

Equation 25 is a one-dimensional Langevin equation driven
by a voltage-dependent thermal white noise. The function
g(V) can be considered to be the negative gradient of a
potential function v(V), i.e., g(V) = -v'(V). Equation 25 is
directly analogous to the motion of an overdamped particle
(friction dominated) moving within a potential well v(V)
and driven by thermal fluctuations. The membrane potential
V corresponds to the location of the particle, the capacitance
C plays the role of a friction coefficient, and the inverse
number of channels NN 1 plays the role of temperature. In
this analogy, the velocity of the particle is balanced by the
forces acting on it. The inertial effects are ignored. The
potential function v(V) has the shape of a double well. One
minimum is at the resting voltage Vr. In order for an action
potential to be generated the particle (membrane potential)
must surmount the barrier and cross to the other minimum.
In the purely deterministic equation this is achieved when
the injected current exceeds a threshold level. In terms of
the double well analogy the constant injected current cor-
responds to a "tilt" of the potential well. At threshold the tilt
is sufficient to negate the local minimum near the resting
potential. The particle is then free to "roll" to the other
minimum. The other degrees of freedom, frozen in this
particular analysis, bring the particle back to rest.

With the addition of channel noise, action potentials can
be generated spontaneously for a subthreshold injected cur-
rent. The thermal noise can occasionally "kick" the mem-
brane potential over the barrier. Once over the barrier, an
action potential results and the slow degrees of freedom will
bring the potential back to resting level. The mean firing
rate can then be approximated by the mean escape rate of
the membrane potential over the barrier. The rate for a
particle to escape over a potential barrier due to thermal
noise is a classic problem addressed by Kramers (1940).
Kramers' calculation of the escape rate relies on an assump-
tion of approximate stationarity which requires a relatively
low temperature compared to the barrier height. Thus our
analysis will become less accurate as the number of chan-
nels decreases (temperature increases). In addition, this
analysis ignores the refractory time and dynamics to restore
the potential back to rest. This will be a small effect if the
escape time is slower than the refractory time.

There is an added difficulty in the analysis of Eq. 25
because the noise amplitude is a function of the membrane
potential. This is referred to as a multiplicative noise pro-
cess. However, this system can be transformed to a system
with additive noise by dividing through by f(V) and using
the transformation dV/dy = f(V) or

v dV'
y = J f(V) w(V), (28)

to yield

C
dy = H(y) + N" 1/2n(t), (29)

H(y) = g((y)) --U'(y). (30)

Here U(y) is an effective potential for the dynamics given
by Eq. 29.

In the region of interest,f(V) is monotonic so the double
well shape is preserved in the effective potential well U(y).
The resulting equation is now the classic barrier escape
problem with simple additive thermal noise. Kramers' for-
mula for the escape rate applied to Eq. 29 is given by
(Kramers, 1940; Risken, 1989)

1
RK - 2i VU(Ymin)IU (Ymax)I (31)

X exp (-C[U(ymax) U(ymin)]NNa),

where Ymin is the position of the resting minimum, and Ymax
is the position of the barrier maximum. A simple derivation
of this formula is given by Risken (1989). Note the negative
exponential dependence on the number of sodium channels
NNa.

The numerical quantities in RK can be computed without
actually inverting the integral relation (Eq. 28). In Eq. 31,
Ymin and Yma are two of the roots of the equation

H(y) =fg(w(y)) = 0. (32)

Because f(V) is well-behaved, these roots are given by

Ymin = W(Vmin), Ymax = W(Vmax), (33)

where V = V.j. Vr and V = Vma,, are the two corre-
sponding roots of g(V). These roots can be solved for
numerically. All quantities in Eq. 31 can be evaluated using
Vmin and Vmax. In particular

U(ymax) - U(ymin)
FYn,ax~ Vmxg V)d

= IYmrn U'(y) dy =- f(V) dV dV
Ynmin Vnmin

[vmax g(VI)
=- fVf 2(V) dV.

nm

(34)

and

U kY)ly=yo (35)

d (g(y"' rdI V)
dy,f(y)) yo [ )(V) = g(VO),

using the fact that h(VO) = 0 for VO = Vj., V... Using
Eqs. 34 and 35 in Eq. 31 renders the expression for the
firing rate in closed form.
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Using the parameters given in Table 1 and solving g(V) =
0 numerically yields three roots at Vmini Vr = -65.0 mV,
Vmax = -62.4 mV, and V3 = 48.9 mV, where V3 is the
location of the other minimum. Thus a spontaneous action
potential is generated if the channel noise can "kick" the
membrane voltage beyond the barrier peak at V = Vmax =
-62.4 mV. The voltage range between Vr and Vmax is
relatively small. In this region, the channel rates remain
close to their resting values so the approximations used are
self-consistent. Once over the barrier the membrane poten-
tial continues increasing until it reaches V - V3 whereupon
the h and n channels become dominant and restore V to rest.
The integral in equation (34) can be evaluated numeri-

cally with the result U(ymax) - U(ymin) = 0.000225. Using
Eq. 35 we find that U'(ymin) = 0.246 and U"'(ym) =
-0.321. Substituting these values into Eq. 31 yields

RK - 45 exp[-NNa/4440]s-'. (36)
Using the sodium density in Table 1 this can be reexpressed
as

RK - 45 exp[-Area/(74 tm2)]s-1. (37)
The probability density function (PDF) for the interspike

intervals can also be estimated. The firing of action poten-
tials is governed by a barrier escape process which has
statistics similar to a simple Poisson process (Risken, 1989).
This implies a negative exponential PDF for the interspike
intervals. This is not entirely the case because there is a
refractory time, or "dead time," immediately after an action
potential. The distribution of interspike intervals is better
described by a modified dead-time Poisson process with a
PDF for the interspike intervals T approximately given by

P(T) - RK(NNa) exp[-RK(NNa)(TO - TR)]E(T - TR), (38)

where 0(s) is the unit step function, TR is the average
refractory time. In actuality the refractory time will itself
also be a stochastic variable due to the discrete channel
effects. The PDF for the interspike intervals will then be a
convolution of Eq. 38 with the PDF governing the refractory
time. The result will be similar to Eq. 38, but the step
function will be "smoothed" out.

These theoretical results are compared to numerical sim-
ulations of the full stochastic system in the next section. It
should be noted that the calculation could be easily adapted
to a variety of excitable membrane equations. The essential
ingredient is that there be a separation of time scales. The
crucial approximation was that only the activation gate of
the Na+ channel was important for action potential gener-
ation. These assumptions should hold for a large class of
neuronal models.

NUMERICAL SIMULATIONS

For comparative purposes, we simulated the complete sys-
tem of discrete ion channels given by the kinetic diagrams
of Eqs. 3 and 4. Problems of this type can be solved using

a variety of methods (Skaugen and Wall0e, 1979). Concep-
tually, the simplest such algorithm would simply keep track
of the states of NNa sodium channels and NK potassium
channels. For each channel in state x at time to, the proba-
bility of remaining in that state for more than t seconds is
given by the relationship exp[- y,t], where -yx is the sum of
all rate constants associated with escape from state x. (For
example, for a potassium channel in state x = n3, Yx = an
+ 313n; see Eqs. 3 and 4.) From this relationship, it follows
that the probability density function associated with the
lifetime of a single channel in state x is flt) = yx exp[- yxt].
To pick a transition time ttr from this PDF, one can draw a
pseudorandom number r, from the uniform distribution [0,
1] and apply the transformation ttr = ln(rT ')/-yx. An algo-
rithm of this architecture would pick transition times for
each channel in the system, then, using the smallest picked
transition time, update the membrane potential, update the
state of the correct channel, and start anew.

Although an algorithm like that above is conceptually
appealing, it is difficult to implement and grossly ineffi-
cient. A far better algorithm takes advantage of the statis-
tical independence and memorylessness of parallel ion
channels. In this formulation, which follows previous work
by Gillespie (1977) and Skaugen and Wall0e (1979), the
states of individual ion channels are not tracked, but rather
the number of ion channels in each of the 13 states of Eqs.
3 and 4 is followed. The lifetime in a particular state (Nn,
XI, Nn = x2, ,Nmho = X3) at t = to has the PDF

f(t) = A exp[-A(t- to)], tz' to (39)

where

3 1 4

A = E E Nmihj)ij + Nnk4
i=O j=O k=O

(40)

In Eq. 40, Nmnhj is the number of sodium channels in state
mihj, Nn, is the number of potassium channels in state nk, 'Yij
is the sum of rate constants associated with escapes from
state mihj, and ~k is the sum of rate constants associated with
escapes from state nk. (For example, Ylo = 1m + ah + 2am;
see Eqs. 3 and 4.) Equation 40 accounts for the 13 state
variables and 28 state transitions of the Markov kinetic
scheme for the Hodgkin-Huxley model.
The transition time ttr from the current state into its

immediate successor is determined by drawing a pseudo-
random number r, from the uniform distribution [0, 1] and
using the transformation ttr = ln(rj ')/A. Once ttr is deter-
mined, the membrane potential is updated to the new current
time t = to + ttr by integrating Eq. 1.
The next step in the stochastic algorithm is to determine

which of 28 possible state transitions occurred at ttr. The
conditional probability that state transition j occurred in the
infinitesimally small time slice [tir, ttr + dt] is given by the
ratio

a,dt aj
._ajdt - a (41)
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where aj (O c j s 27) is the product of the rate constant
associated with transition j and the number of channels
currently in the parent state associated with that transition.
For example, if transition 1 represents the transition of a
potassium channel from having 0 open n gates to having 1
open n gate, a, = 4a.NnO. Because the sum in the denom-
inator of Eq. 41 is simply a reordered version of Eq. 40, Eq.
41 also equals a/A. In the algorithm, the specific transition
that occurred at time ttr is determined by drawing a random
variable v from the uniform distribution [0, A], and deter-
mining ,u such that

jX1I

Iai<v' a
i=O i=O

(42)

The value of ,, which represents the transition that oc-

curred, is used to update the count of channels in each state.
Next, values of all voltage-dependent rate constants are

updated and the process is continued by finding the next
transition time.

This algorithm has two principal advantages over an

algorithm that tracks individual ion channels. First, because
the total number of channels in a given state is tracked, the
present algorithm requires less bookkeeping. Second, and
most importantly, the current algorithm requires the gener-

ation of only two random numbers per time step, compared
with NNa + NK for the more traditional algorithm. This
enormous reduction in required pseudorandom numbers
leads to much faster execution and less stringent require-
ments on the random number generator.
The present stochastic algorithm relies on two assump-

tions that could potentially lead to errors. First, it is depen-
dent on a high-quality algorithm for generating pseudoran-
dom, uniformly distributed numbers. For these studies, the
algorithm of Press and colleagues (1992) was used. Second,
it is assumed that the rate constants of Eqs. 3 and 4 do not
change significantly during a single time step. Because
transitions occur very frequently in practice, errors due to
violation of this assumption are small.
The accuracy of the algorithm was checked three ways.

First, simulation results were compared with those of Skau-
gen and Wall0e (1979) and found to agree. Second, both
spontaneous and driven results with large areas were com-

pared with results from the deterministic Hodgkin-Huxley
model, generated using the simulation package NEURON
(Hines, 1989). Third, simulation results under both current
and voltage clamp conditions were compared with analyti-
cally derived results in the previous section.
A set of simulations was performed in which the mem-

brane potential was held constant at -65 mV. In these
simulations, Nm3h,, the number of open Na+ channels of a

total of NNa = 6000, was tracked at intervals of 0.01 ms.
The autocorrelation function generated from these records is
shown in Fig. 1 (closed symbols). Also shown is the pre-
dicted relationship from the stochastic theory (solid line)
obtained by multiplying Eq. 19 by hrN2Na. The predicted and

FIGURE 1 Predicted and modeled autocorrelation functions. Symbols
show the numerically calculated autocorrelation function of the number of
open Na+ channels (Nm3hi) for a simulation of a 10-s epoch under voltage
clamp at a potential of -65 mV for a membrane patch of 100 ,um2. The
sampling interval was 0.01 ms. The solid line shows the theoretically
predicted autocorrelation function, obtained by multiplying Eq. 19 by
h,N2Na.

measured traces are in excellent agreement, particularly for
times <0.5 ms. For greater times, there is slightly more
divergence, perhaps because of the effects of the slower
inactivation process, considered "frozen" in Eq. 19.

Figure 2 shows output from the simulations under current
clamp, with I = 0, for six values of membrane area. As has

Ast1uwwumiitiia tiuuuI1.1 14

10UJJJIU
50 HI 111 I 111 HI
100

200

.j1

400

FIGURE 2 Spontaneous output from the simulations under current

clamp. Applied current is zero in all cases. To the left of each trace is the
area of the membrane, which was used, along with channel densities from
Table 1, to calculate NNa and NK. Vertical scale: 50 mV. Horizontal scale:
100 ms.
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been noted previously, the spontaneous rate is high for small
membrane areas, which correspond to small numbers of
channels. As the membrane area is increased, the rate of
spontaneous action potentials approaches zero, the expected
rate from the deterministic model.

Average rate results from several runs are shown in Fig.
3, along with the predicted relationship from Eq. 37. Sim-
ulated and predicted results agree well except at very small
values of area. For these values, openings of a small number
of channels can generate anomalous spikes not accounted
for by the present theory. A least-squares fit of a decaying
exponential function to the last four points from the numer-
ical results gives a magnitude of 42 Hz and a decay constant
of 71 pum2. (Compare theoretical values of 45 Hz and 74
AM2.)

Simulation results were examined in terms of interspike
interval distributions as well. Figure 4 shows an ISI histo-
gram, generated from three 10-s runs with Area = 100 A.m2.
Values have been normalized to have unit area (i.e., each
value has been divided by bin width and the total number of
intervals in the ISI set.) The trace is the predicted relation-
ship from Eq. 38, with RK calculated from Eq. 37 and a
constant refractory period of 18 ms, picked as the minimum
interspike interval seen in the simulated data. Again, agree-
ment between predicted and simulated results is good. To-
gether, Figures 3 and 4 indicate that both the average rate of
firing and the PDF of interspike intervals are determined
largely by the Na+ activation process alone. Thus, these
results support the major assumption of our analytic
analysis.

DISCUSSION

We have analyzed the spontaneous firing rate for the
Hodgkin-Huxley system with random channel kinetics. We
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FIGURE 3 Spontaneous rate of the model as a function of membrane
surface area. Symbols are mean (± standard deviation) values of sponta-
neous firing rate, generated from three runs of 10 s (model time) each. The
solid line shows the predicted mean firing rate, calculated from Eq. 37.
Predicted and observed firing rates are in good agreement for all but the
smallest values of surface area.
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FIGURE 4 Interspike intervals from simulations agree with the pre-
dicted PDF. Open bars show the interspike interval histogram for sponta-
neous action potentials with surface area = 100 tkm2. Values have been
divided by bin width and total number of spikes. The solid trace shows
the predicted PDF for the system under these conditions, calculated
from Eq. 38 with a refractory period of 18 ms and average rate of 10.5
spikes/s.

focused on finding closed-form expressions for the firing
rate as a function of the number of ion channels and the
probability density function for the interspike intervals. We
then performed accurate numerical simulations of the full
stochastic system to test our analytical predictions. The
theoretical results match the numerical results very well, as
seen in Figure 3. Given that the firing rate is related to the
first passage time of a stochastic problem, the probability
density function for the interspike intervals can also be
estimated. For a purely Poisson process this will be given by
a negative exponential. However, in the case of the excit-
able membrane, there is a refractory time which can be
accounted for by shifting the negative exponential. As seen
in Figure 4, this approximation is fairly good. It captures the
mean and variance of the distribution.
Our analytical approach was to reduce the problem of

action potential generation to a simple barrier escape prob-
lem. The firing rate was approximated by the mean first
passage time or barrier escape time. This was accomplished
by a series of approximations that relied on the separation of
time scales inherent in the problem. For the classic squid
giant axon parameters used, the calculation was highly
successful. Our approximations should hold even when the
separation of time scales is not exceedingly large. The
calculation required that the h and n currents could be
considered fixed at their resting values. Near resting poten-
tial, the effect of the n current is very small, and thus
approximation errors are not important. The deactivating
current h has a significant value near rest and does play an
important role. The multiplicative nature of the noise di-
minishes its influence. Both the potential well and the noisy
forcing have the same factor of h in the Langevin equation
25. Thus, the effect of h is "scaled" away. This is best seen
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in the transformation to the Langevin equation with additive
noise 29. Also essential to the calculation was that the
membrane potential be considered fixed (voltage-clamped)
when calculating the statistical properties of the stochastic
variable M3. This approximation requires a wide separation
of time scales between the membrane potential and the fast
activating m current. The multiplicative noise again plays a
role. The noise amplitude is very small below resting po-
tential and increases sharply beyond threshold at V = Vma.
This changes the effective shape of the well, creating a very
sharp dropoff beyond threshold. Once the membrane poten-
tial reaches threshold, action potential generation ensues
quickly. Thus, only the dynamics between rest and thresh-
old need to be captured. The distance between rest and
threshold is small (2.6 mV) so over this interval, the reac-
tion rates (am and 1m), and the asymptotic fraction minr, do
not vary much. The crucial time scale here may be the
response time of M3 compared to the dwell time in the well
(firing time). The firing time is on the order of 20 ms and the
response time is around 0.24 ms, which is a wide separation.
We do not have a definite criterion for the applicability of

our method. However, we are confident that our results will
be very accurate for any parameter set with fairly modest
time scale separations such as those used in this paper. Our
analytical method is not limited to the Hodgkin-Huxley
system. It could easily be generalized to any excitable
membrane equation which has a fast activating current and
slow recovery currents compared to the membrane time
scale near rest. For the Hodgkin-Huxley system, the roots of
a transcendental equation were required and were solved for
numerically. However, for simple polynomial equations
such as the Fitzhugh-Nagumo equation, a completely ana-
lytical result could be obtained.
Our formalism could be applied to understanding the

effect of channel noise on suprathreshold firing. In this case
the firing rate would not be given by a barrier escape time.
In the suprathreshold regime the deterministic dynamics
will bring the membrane potential to threshold. However,
the channel noise will cause this path to fluctuate. The firing
time can be estimated by evaluating the mean first passage
time from rest to threshold of this stochastic process. Our
reduced description could also possibly be useful for under-
standing the propagation of action potentials. The one-
dimensional Langevin equation could be generalized to a
spatially extended "cable" equation. However, this would
be only useful in understanding the propagation of an "ac-
tion potential front," because the restoration dynamics are
not included.

Experimental verification of our results could involve
comparing recordings made at the cellular level with those
made using membrane patches of different sizes. Interpre-
tation of these experiments would be difficult unless one
could demonstrate that Na+, K+, and leak channels are
distributed evenly on the cell membrane. Another approach,
that of blocking different fractions of the Na+ channels with
low concentrations of tetrodotoxin, would be greatly com-

plicated by the need to keep the ratio of Na+, K+, and leak
channels constant.
The effects of ion channel fluctuations may be macro-

scopically relevant. For example, it has been argued that
such fluctuations in muscarinic K+ channels may contribute
to the heart rhythm in the sino-atrial node (Ito et al., 1994).
In neuronal structures with relatively small surface areas,
such as nodes of Ranvier, the macroscopic effects of ion
channel noise seem to be important in determining observed
distributions in the threshold for generation of action poten-
tials (Lecar and Nossal, 197 la; Rubinstein, 1995; Sigworth,
1980). Our results indicate that channel fluctuations may
account for spontaneous activity in these structures as well.
We predict a characteristic displaced negative exponential
distribution of interspike intervals that is often seen exper-
imentally. For the Markov representation of the Hodgkin-
Huxley model, the mean firing rate and interspike interval
distribution need not be calculated via time-consuming sim-
ulations, but rather can be estimated analytically using Eqs.
36 and 38. It is our hope that the presence of such simplified
methods will spur more activity in this area.
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