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Fifty-eight enterohemorrhagic Escherichia coli 026:H11 or O26:NM (nonmotile) strains and 44 atypical
enteropathogenic E. coli 026:H11 or 026:NM strains isolated from patients in 11 countries during 52 years
share a common pool of non-stx virulence genes, fitness loci, and genotypic and phenotypic diagnostic markers.
These findings indicate close relatedness between these pathotypes and provide a basis for their clinical

laboratory diagnosis.

Escherichia coli strains expressing somatic (O) antigen 26
and flagellar (H) antigen 11 or no H antigen (i.e., they are
nonmotile) (NM) are classified as either atypical enteropatho-
genic E. coli (aEPEC) (29) or enterohemorrhagic E. coli
(EHEC) (18). aEPEC 026 strains, first identified as causes of
infantile diarrhea in the 1940s (20), have caused pediatric
diarrhea worldwide (11, 24, 29). Such strains contain eae en-
coding intimin (11), but in contrast to typical EPEC (20, 29),
aEPEC 026 strains lack the EPEC adherence factor (EAF)
plasmid (11, 24) encoding bundle-forming pili (20). They also
lack genes encoding Shiga toxins (Stx), which are the major
virulence factors of EHEC 026 (20). Since being recognized as
pathogens >20 years ago (16, 17), EHEC O26 strains have
emerged as the most common non-O157 EHEC serogroup
causing hemolytic uremic syndrome (HUS) and diarrhea in
Europe (5, 7, 28) and have been associated with human dis-
eases worldwide (12, 14).

How related are EHEC 026 and aEPEC 026? Analysis of
housekeeping genes (22) and comparative indexing of the core
genomes (1) demonstrate that EHEC and aEPEC 026 share a
variety of chromosomal regions. However, rosters of putative
virulence characteristics of EHEC and aEPEC 026 have not
been compared. Moreover, despite the importance of EHEC
and aEPEC 026 as human pathogens, diagnostic procedures
that identify both groups have not been established. To gain
insight into their relatedness and to improve laboratory diag-
nosis of these organisms, we compared putative virulence
genes of EHEC and aEPEC 026 isolates from patients from
11 countries, collected during more than 50 years, and sought
genotypes and phenotypes that can be exploited to detect both
of these pathogenic groups in clinical laboratories.

Bacterial strains. Fifty-eight EHEC and 44 aEPEC 026
strains were isolated between 1952 and 2003 from patients with

* Corresponding author. Mailing address: Institut fiir Hygiene, Uni-
versitéatsklinikum Miinster, Robert Koch Str. 41, 48149 Miinster, Ger-
many. Phone: 49-251/980-2849. Fax: 49-251/980-2868. E-mail: mbiela
(@uni-muenster.de.

4225

HUS (25) (n = 31) or diarrhea (n = 71) in 11 countries
(Austria [n = 2], Czech Republic [n = 22], Denmark [n = 3],
France [n = 2], Germany [n = 59], Italy [n = 2], Norway [n =
1], the United Kingdom [n = 2], Australia [n = 1], Peru [n =
1], and the United States [n = 7]). Isolates from the same
country showed no apparent geographical or temporal linkage.
Sixty-two strains belonged to the serotype O26:H11, and 40
were of the serotype O26:NM. Restriction fragment length
polymorphism analysis of the fliC gene demonstrated that all
belong to the H11 clone complex.

Genotypic and phenotypic analyses. The strains were ana-
lyzed for putative virulence genes and diagnostic markers (Ta-
ble 1) by PCRs as described previously (3, 4, 6, 7, 8, 9, 13, 21,
23, 26, 30). Long polar fimbriae of EHEC 026 (LPF,4) (27)
were identified with primers IpfAO26-1 (5'-CCGCTTGTGTT
GTGTCTCC-3") and IpfAO26-2 (5'-AGCAGATTTACCAG
TATTCA-3") derived from a sequence of the Ipf4 gene of E.
coli O26:H11 strain 843/02 (27) (GenBank accession number
AB161111); the PCR was performed in 30 cycles of denaturing
(94°C, 30 s), annealing (50°C, 1 min), and extension (72°C, 1
min), followed by a final extension (72°C, 5 min). Molecular
analysis of the high-pathogenicity island (HPI) was accom-
plished as previously described (15). The enterohemolytic phe-
notype was sought on enterohemolysin agar (2) (Sifin, Berlin,
Germany). Tellurite resistance was determined based on an
organism’s ability to grow on cefixime-tellurite (CT)-sorbitol
MacConkey agar (SMAC) (Oxoid, Hampshire, United King-
dom) and on CT-rhamnose MacConkey agar (CT-RMAC)
(Sifin) (12). Urease activity was examined in urea degradation
broth (Heipha, Heidelberg, Germany) after a 24-h incubation
(37°C).

Stool analysis for E. coli 026. Two-hundred-microliter ali-
quots of enrichment cultures (7) from 636 stools from patients
with HUS (n = 177) or diarrhea (n = 459) were inoculated on
SMAC, CT-SMAC, and enterohemolysin agar between Janu-
ary 2002 and December 2003. The overnight cultures were
PCR screened for stx,, stx,, eae, and rfby,5, (7). Seventy-eight
1fboys,-negative stools that were stx positive/eae positive or stx
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TABLE 1. Distribution of putative virulence genes and other loci among EHEC and aEPEC O26:H11/NM strains

No. (%) of strains positive for the gene among:

Gene or plasmid Predicted product or phenotype” P
EHEC 026 (n = 58) aEPEC 026 (n = 44)

Stxy Shiga toxin 1 30 (51.7)° 0 <0.0001”
Stx, Shiga toxin 2 33 (56.9)° 0 <0.0001
EHEC-hlyA EHEC hemolysin 47 (81.0) 33 (75.0) 0.80
cdt? Cytolethal distending toxin 0 0 NA
eae 3 Intimin 3 58 (100.0) 44 (100.0) 1.00
efa-1¢ EHEC factor for adherence (Efal) 58 (100.0) 44 (100.0) 1.00
iha IrgA homologue adhesin (Iha) 57 (98.3) 39 (88.6) 0.72
IpfAos6 Major fimbrial subunit of LPF 58 (100.0) 44 (100.0) 1.00
IpfAo113 Major fimbrial subunit of LPFq ;5 51 (87.9) 39 (88.6) 0.98
saa STEC autoagglutinating adhesin (Saa) 0 0 NA
pEAF EAF plasmid 0 0 NA
bfpA Bundle-forming-pili structural subunit 0 0 NA
irp-2 Iron-repressible protein 2 58 (100.0) 44 (100.0) 1.00
fuA Yersiniabactin receptor 58 (100.0) 44 (100.0) 1.00
ter® Tellurite resistance 53 (91.4) 36 (81.8) 0.71
ure” Urease 52(89.7) 35(79.5) 0.69

“IrgA, iron-regulated gene A; LPF, long polar fimbriae of EHEC 026 (LPF,,) or EHEC O113 (LPF,,3); STEC, Shiga toxin-producing E. coli.

® The x? test (a P value of <0.05 was considered significant). NA, not applicable.

¢ Five strains harbored both stx; and stx,.
4 cdt-1, cdt-11, cdt-111, cdt-1V, and cdt-V alleles (3) were investigated.
¢ The complete efa-1 gene (ca. 10 kb) was identified in all strains.

/A 1-kb region of the EAF plasmid used as the EAF probe (pEAF) (6, 20) was targeted.
£ All seven genes of the ter cluster of E. coli O157:H7 strain EDL933 (terZ, terA, terB, terC, terD, terE, and terF) (26) were present in fer" strains.
" All seven genes of the ure cluster of strain EDL933 (ureD, ureA, ureB, ureC, ureE, ureF, and ureG) (9) were present in ure™ strains.

negative/eae positive were further investigated for E. coli O26
(described below).

Distribution of putative virulence and fitness genes among
EHEC and aEPEC 026:H11/NM strains. The presence of stx
genes in 58 EHEC strains and their absence in the 44 aEPEC
strains was the only statistically significant difference (Table 1).
All other genes investigated that encode various toxins and
adhesins were either present with comparable frequencies
among EHEC and aEPEC O26:H11/NM strains or absent
from all strains of each pathotype (Table 1). The presence of
irp-2 and fyuA, components of the HPI which encodes an iron
uptake system and has been proposed to be a “fitness island”
(15), in each of the EHEC and aEPEC 026 strains (Table 1)
prompted us to investigate whether a complete HPI is present
in such strains. Two EHEC strains and two aEPEC strains
were subjected to 14 additional PCRs which target the other
HPI genes or link consecutive genes (15). This analysis dem-
onstrated that each of the EHEC and aEPEC 026 strains
contained a complete HPI which was structurally conserved;
this further supports the close relatedness between these two

pathotypes. Most EHEC and aEPEC 026 strains had genes
encoding tellurite resistance (terZ, terA, terB, terC, terD, terE,
and terF) (26) and urease production (ureD, ureA, ureB, ureC,
ureE, ureF, and ureG) (9) (Table 1). The finding of the wide-
spread distribution of the ure genes within both E. coli 026
pathotypes is particularly important in light of a recent work
(19) which demonstrated that the presence of the ureC gene
distinguishes EHEC of the major serogroups, including 026,
from diarrheagenic E. coli of other pathotypes, including
EPEC; based on this, ureC was recommended as a target to
screen for EHEC (19). In contrast, our data demonstrate that
ureC is also a suitable target to seek aEPEC O26. However, in
accordance with the observation by Nakano et al. (19), urease
activity was expressed by only a minority of ure” EHEC and
aEPEC 026 strains (Table 2), indicating that the urease phe-
notype is not a suitable diagnostic marker for these strains.
Diagnostically useful phenotypes of EHEC and aEPEC 026:
H11/NM strains. Each of 47 EHEC 026:H11/NM strains and
33 aEPEC 026:H11/NM strains that harbored the EHEC hly4
gene demonstrated an enterohemolytic phenotype (Table 2).

TABLE 2. Genotypic and phenotypic characteristics of EHEC and aEPEC O26:H11/NM strains with potential diagnostic utility

No. of strains with gene(s)/phenotype”

No. (%) of strains with phenotype combination

Total no.
Group of strains EHEC hiyA/ ter/CT-SMAC/ ure genes?/ EHEC-Hly* EHEC-Hly~ EHEC-Hly™" EHEC-Hly~
EHEC-HIly” CT-RMAC* urease activity® CT-media™ CT-media™ CT-media™ CT-media ™
EHEC 026 58 47/47 53/53/53 43 (74.1) 10 (17.3) 4(6.9) 1(1.7)
aEPEC 026 44 33/33 36/36/36 28 (63.6) 8 (18.2) 5(11.4) 3(6.8)

¢ The remaining strains of each group were negative for the genes and the corresponding phenotypes.

> EHEC-Hly, enterohemolytic phenotype.

¢ Presence of ter genes (terZ, terA, terB, terC, terD, terE, and terF)/growth on CT-SMAC/growth on CT-RMAC. The growths on CT-SMAC and CT-RMAC were

comparable with those on the corresponding media without CT.
4 All ure genes (ureD, ureA, ureB, ureC, ureE, ureF, and ureG) were present.
¢ As detected in the urea degradation broth after a 24-h incubation.

/ CT-media, growth on CT-SMAC and CT-RMAC; +, the phenotype was present; —, the phenotype was absent.
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TABLE 3. Isolation of EHEC and aEPEC 026 from stool samples
by colony blot hybridization, culture on enterohemolysin agar, and
culture on CT-SMACs

No. of E. coli O26 strains isolated by:

Result of No. of Colony blot
stool PCR stools with hybridization Entero- T.
screening PCR result with probe: her:g();}rfsln SMAC
stx,  stx,  eae
st feae™ 48 64 8 14 13° 10¢
stx negative/eae ™ 30 0 0 5 40 3¢
Total 78 6 8 19 17 13¢

“ The colonies which hybridized with the stx; or stx, probe also hybridized with
the eae probe.

® One EHEC strain and one aEPEC strain that were missed on enterohemo-
lysin agar were identified on CT-SMAC.

¢ Four EHEC strains and two aEPEC strains that were missed on CT-SMAC
were identified on enterohemolysin agar.

@ All strains contained EHEC hlyA; this gene was absent from the two strains
that could not be detected on enterohemolysin agar.

¢ All strains contained fer genes; these genes were also present in the six strains
that could not be isolated on CT-SMAC because of their low numbers in stools.

Moreover, the presence of fer genes was perfectly correlated
with tellurite resistance of EHEC and aEPEC 026 strains
(Table 2). On CT-SMAC, all strains fermented sorbitol. In
contrast, on CT-RMAC, 50 (94.3%) of 53 EHEC 026 strains
and 30 (83.3%) of 36 aEPEC 026 strains generated rhamnose-
nonfermenting, colorless colonies, allowing their differentia-
tion from rhamnose-fermenting (reference 12 and this study),
normal intestinal flora. Most EHEC and aEPEC 026 strains
displayed both enterohemolytic and tellurite resistance pheno-
types (Table 2). Only four of the 102 E. coli O26 strains inves-
tigated displayed neither of these two phenotypes (Table 2),
because they lacked the encoding genes and could not be,
therefore, identified on either enterohemolysin agar or tellu-
rite-containing media.

Isolation of EHEC and aEPEC 026 from stools. To validate
the utility of the enterohemolytic and tellurite resistance phe-
notypes for isolating EHEC and aEPEC O26 from stools, 78
fecal samples that were stx positive/eae positive or stx negative/
eae positive by PCR screening were subjected to colony blot
hybridization with stx,, stx,, and eae digoxigenin-labeled probes
(7) (used as a gold standard). In parallel, they were cultured on
enterohemolysin and CT-SMACs. Resulting enterohemolytic
and sorbitol-fermenting colonies, and hybridizing colonies
from master plates, were screened by slide agglutination with
026 antiserum. By use of colony blot hybridization, 14 EHEC
026 strains and 5 aEPEC 026 strains were isolated (Table 3).
Enterohemolysin agar culture identified 13 of the 14 EHEC
strains and 4 of the 5 aEPEC strains detected by colony blot
hybridization (sensitivities of 92.9% and 80.0%, respectively)
(Table 3). Culture on CT-SMAC identified 10 of the 14 EHEC
strains and 3 of the 5 aEPEC strains identified by colony blot
hybridization (sensitivities of 71.4% and 60.0%, respectively)
(Table 3). The two strains that were not detected on entero-
hemolysin agar lacked the EHEC hly4 gene. In contrast, the
six strains which were missed on CT-SMAC contained com-
plete ter operons. The failure to identify these strains probably
resulted from low numbers of these organisms in the respective
stools, as indicated by colony blot hybridization, combined with
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the absence of a distinct sorbitol fermentation phenotype. CT-
SMAC is a superior medium for the isolation of non-sorbitol-
fermenting EHEC O157:H7 (7, 20); it was also successfully
used to isolate EHEC 026 from acid-pretreated bovine feces
(10). However, it does not distinguish sorbitol-fermenting E.
coli 026 from other intestinal coliforms that are usually, but
not always, reduced in density on CT-SMAC, because some of
them also contain zer genes (26). This might explain why the
sensitivity of CT-SMAC for the isolation of E. coli 026 in our
study was lower than that of enterohemolysin agar, which al-
lows a direct phenotypic differentiation of these pathogens
from normal intestinal flora. However, culture on CT-SMAC
identified the two EHEC hlyA-negative strains that were not
detected on enterohemolysin agar. Conversely, all six strains
that were missed on CT-SMAC were detected on enterohe-
molysin agar. Taken together, the results of this 2-year pro-
spective study demonstrated that the combined culture on en-
terohemolysin agar and CT-SMAC is a simple and sensitive
procedure to isolate both EHEC and aEPEC O26 from eae-
positive stool samples.

Our data demonstrate that EHEC and aEPEC 026:
H11/NM strains are largely conserved, without evidence of
geographic or secular variation. These two pathotypes share a
common pool of fitness and virulence genes, with stx genes
being the only difference identified. Some of the easily detect-
able phenotypes shared by EHEC and aEPEC O26 strains,
such as an enterohemolytic phenotype and growth on tellurite-
containing media, can be exploited for the isolation of these
pathogens from stool samples.
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