Table 1. Gap-filling methods hierarchy and parameters.
# | Category | Direction1 | Variables2 | Method | Architecture4 | Key Parameters | Context Length3 |
---|---|---|---|---|---|---|---|
1 | Simple | – | Uni | Mean Imputation | Statistical | – | – |
2 | Simple | – | Uni | Median Imputation | Statistical | – | – |
3 | Local | – | Uni | Local Mean | Statistical | Window size = Variable | 15 + gap + 15 |
4 | Local | – | Uni | Local Median | Statistical | Window size = Variable | 15 + gap + 15 |
5 | Window | – | Uni | Linear Interpolation | Mathematical | – | 10 |
6 | Window | – | Uni | Polynomial Interpolation | Mathematical | Degree = 3 | Variable |
7 | Window | – | Uni | B-spline Interpolation | Mathematical | – | Variable |
8 | Window | – | Uni | ARIMA Imputation | Statistical | Order=(1,0,0) | 100 |
9 | Autoreg | Uni | Uni | UniAR LSTM | Neural Network | Units = 64, Activation = tanh | 32 |
10 | Autoreg | Uni | Uni | UniAR GRU | Neural Network | Units = 64, Activation = tanh | 32 |
11 | Autoreg | Uni | Uni | UniAR RNN | Neural Network | Units = 64, Activation = tanh | 32 |
12 | Autoreg | Uni | Uni | UniAR CNN | Neural Network | Filters = 32, Kernel = 3 | 32 |
13 | Autoreg | Uni | Uni | UniAR TCN | Neural Network | Filters = 32, Dilations=[1,2,4,8] | 32 |
14 | Autoreg | Uni | Uni | UniAR RF | Tree-based | Estimators = 50 | 32 |
15 | Autoreg | Uni | Uni | UniAR XGB | Tree-based | Estimators = 50 | 32 |
16 | Autoreg | Uni | Multi | UniAR XGB Multi | Tree-based | Estimators = 50, Features = 5 | 32 |
17 | Seq2Seq | Uni | Uni | UniSeq2Seq LSTM | Neural Network | Units = 64, Bidirectional | 32/32 |
18 | Seq2Seq | Uni | Uni | UniSeq2Seq GRU | Neural Network | Units = 64, Bidirectional | 32/32 |
19 | Seq2Seq | Uni | Uni | UniSeq2Seq RNN | Neural Network | Units = 64, Bidirectional | 32/32 |
20 | Seq2Seq | Uni | Uni | UniSeq2Seq CNN | Neural Network | Filters = 32/64, Kernel = 3 | 32/32 |
21 | Seq2Seq | Uni | Uni | UniSeq2Seq TCN | Neural Network | Filters = 64, Dilations=[1,2,4,8] | 32/32 |
22 | Seq2Seq | Uni | Uni | UniSeq2Seq RF | Tree-based | Estimators = 50 | 32/32 |
23 | Seq2Seq | Uni | Uni | UniSeq2Seq XGB | Tree-based | Estimators = 50 | 32/32 |
24 | Seq2Seq | Uni | Multi | UniSeq2Seq LSTM Multi | Neural Network | Units = 64, Bidirectional, Features = 5 | 32/32 |
25 | Seq2Seq | Uni | Multi | UniSeq2Seq CNN Multi | Neural Network | Filters = 32, Kernel = 3, Features = 5 | 32/32 |
26 | Seq2Seq | Uni | Multi | UniSeq2Seq RF Multi | Tree-based | Estimators = 50, Features = 5 | 32/32 |
27 | Seq2Seq | Uni | Multi | UniSeq2Seq XGB Multi | Tree-based | Estimators = 50, Features = 5 | 32/32 |
28 | Autoreg | Bi | Uni | LSTM Autoreg | Neural Network | Units = 64, Activation = tanh | 32 |
29 | Autoreg | Bi | Uni | GRU Autoreg | Neural Network | Units = 64, Activation = tanh | 32 |
30 | Autoreg | Bi | Uni | RNN Autoreg | Neural Network | Units = 64, Activation = tanh | 32 |
31 | Autoreg | Bi | Uni | CNN Autoreg | Neural Network | Filters = 32, Kernel = 3 | 32 |
32 | Autoreg | Bi | Uni | TCN Autoreg | Neural Network | Filters = 32, Dilations=[1,2,4,8] | 32 |
33 | Autoreg | Bi | Uni | RF Autoreg | Tree-based | Estimators = 50 | 32 |
34 | Autoreg | Bi | Uni | XGB Autoreg | Tree-based | Estimators = 50 | 32 |
35 | Autoreg | Bi | Multi | XGB Autoreg Multi | Tree-based | Estimators = 50, Features = 5 | 32 |
36 | Seq2Seq | Bi | Uni | LSTM Seq2Seq | Neural Network | Units = 64 | 32 |
37 | Seq2Seq | Bi | Uni | GRU Seq2Seq | Neural Network | Units = 64 | 32 |
38 | Seq2Seq | Bi | Uni | RNN Seq2Seq | Neural Network | Units = 64 | 32 |
39 | Seq2Seq | Bi | Uni | CNN Seq2Seq | Neural Network | Filters = 32, Kernel = 3 | 32 |
40 | Seq2Seq | Bi | Uni | TCN Seq2Seq | Neural Network | Filters = 32, Dilations=[1,2,4] | 32 |
41 | Seq2Seq | Bi | Uni | RF Seq2Seq | Tree-based | Estimators = 50 | 32 |
42 | Seq2Seq | Bi | Uni | XGB Seq2Seq | Tree-based | Estimators = 50 | 32 |
43 | Seq2Seq | Bi | Multi | XGB Seq2Seq Multi | Tree-based | Estimators = 50, Features = 5 | 32 |
44 | Seq2Seq | Bi | Multi | RF Seq2Seq Multi | Tree-based | Estimators = 50, Features = 5 | 32 |
45 | Dynamic | Uni | Uni | Dynamic Uni Seq2Seq XGB | Tree-based | Estimators = 50, Variable Context | Variable |
46 | Dynamic | Uni | Multi | Dynamic Multi Seq2Seq XGB | Tree-based | Estimators = 50, Features = 5, Variable Context | Variable |
1Direction: Uni = Unidirectional, Bi = Bidirectional
2Variables: Uni = Univariate (PM2.5 only), Multi = Multivariate (PM2.5 + meteorological and temporal features)
3Context Length: For bidirectional models, values represent pre/post gap context lengths
4Neural network models used Adam optimizer with learning rate = 0.001, trained for up to 30 epochs with early stopping (patience = 15). For all models, batch size = 32 was used during training