Skip to main content
. 2025 Aug 14;20(8):e0330211. doi: 10.1371/journal.pone.0330211

Table 1. Gap-filling methods hierarchy and parameters.

# Category Direction1 Variables2 Method Architecture4 Key Parameters Context Length3
1 Simple Uni Mean Imputation Statistical
2 Simple Uni Median Imputation Statistical
3 Local Uni Local Mean Statistical Window size = Variable 15 + gap + 15
4 Local Uni Local Median Statistical Window size = Variable 15 + gap + 15
5 Window Uni Linear Interpolation Mathematical 10
6 Window Uni Polynomial Interpolation Mathematical Degree = 3 Variable
7 Window Uni B-spline Interpolation Mathematical Variable
8 Window Uni ARIMA Imputation Statistical Order=(1,0,0) 100
9 Autoreg Uni Uni UniAR LSTM Neural Network Units = 64, Activation = tanh 32
10 Autoreg Uni Uni UniAR GRU Neural Network Units = 64, Activation = tanh 32
11 Autoreg Uni Uni UniAR RNN Neural Network Units = 64, Activation = tanh 32
12 Autoreg Uni Uni UniAR CNN Neural Network Filters = 32, Kernel = 3 32
13 Autoreg Uni Uni UniAR TCN Neural Network Filters = 32, Dilations=[1,2,4,8] 32
14 Autoreg Uni Uni UniAR RF Tree-based Estimators = 50 32
15 Autoreg Uni Uni UniAR XGB Tree-based Estimators = 50 32
16 Autoreg Uni Multi UniAR XGB Multi Tree-based Estimators = 50, Features = 5 32
17 Seq2Seq Uni Uni UniSeq2Seq LSTM Neural Network Units = 64, Bidirectional 32/32
18 Seq2Seq Uni Uni UniSeq2Seq GRU Neural Network Units = 64, Bidirectional 32/32
19 Seq2Seq Uni Uni UniSeq2Seq RNN Neural Network Units = 64, Bidirectional 32/32
20 Seq2Seq Uni Uni UniSeq2Seq CNN Neural Network Filters = 32/64, Kernel = 3 32/32
21 Seq2Seq Uni Uni UniSeq2Seq TCN Neural Network Filters = 64, Dilations=[1,2,4,8] 32/32
22 Seq2Seq Uni Uni UniSeq2Seq RF Tree-based Estimators = 50 32/32
23 Seq2Seq Uni Uni UniSeq2Seq XGB Tree-based Estimators = 50 32/32
24 Seq2Seq Uni Multi UniSeq2Seq LSTM Multi Neural Network Units = 64, Bidirectional, Features = 5 32/32
25 Seq2Seq Uni Multi UniSeq2Seq CNN Multi Neural Network Filters = 32, Kernel = 3, Features = 5 32/32
26 Seq2Seq Uni Multi UniSeq2Seq RF Multi Tree-based Estimators = 50, Features = 5 32/32
27 Seq2Seq Uni Multi UniSeq2Seq XGB Multi Tree-based Estimators = 50, Features = 5 32/32
28 Autoreg Bi Uni LSTM Autoreg Neural Network Units = 64, Activation = tanh 32
29 Autoreg Bi Uni GRU Autoreg Neural Network Units = 64, Activation = tanh 32
30 Autoreg Bi Uni RNN Autoreg Neural Network Units = 64, Activation = tanh 32
31 Autoreg Bi Uni CNN Autoreg Neural Network Filters = 32, Kernel = 3 32
32 Autoreg Bi Uni TCN Autoreg Neural Network Filters = 32, Dilations=[1,2,4,8] 32
33 Autoreg Bi Uni RF Autoreg Tree-based Estimators = 50 32
34 Autoreg Bi Uni XGB Autoreg Tree-based Estimators = 50 32
35 Autoreg Bi Multi XGB Autoreg Multi Tree-based Estimators = 50, Features = 5 32
36 Seq2Seq Bi Uni LSTM Seq2Seq Neural Network Units = 64 32
37 Seq2Seq Bi Uni GRU Seq2Seq Neural Network Units = 64 32
38 Seq2Seq Bi Uni RNN Seq2Seq Neural Network Units = 64 32
39 Seq2Seq Bi Uni CNN Seq2Seq Neural Network Filters = 32, Kernel = 3 32
40 Seq2Seq Bi Uni TCN Seq2Seq Neural Network Filters = 32, Dilations=[1,2,4] 32
41 Seq2Seq Bi Uni RF Seq2Seq Tree-based Estimators = 50 32
42 Seq2Seq Bi Uni XGB Seq2Seq Tree-based Estimators = 50 32
43 Seq2Seq Bi Multi XGB Seq2Seq Multi Tree-based Estimators = 50, Features = 5 32
44 Seq2Seq Bi Multi RF Seq2Seq Multi Tree-based Estimators = 50, Features = 5 32
45 Dynamic Uni Uni Dynamic Uni Seq2Seq XGB Tree-based Estimators = 50, Variable Context Variable
46 Dynamic Uni Multi Dynamic Multi Seq2Seq XGB Tree-based Estimators = 50, Features = 5, Variable Context Variable

1Direction: Uni = Unidirectional, Bi = Bidirectional

2Variables: Uni = Univariate (PM2.5 only), Multi = Multivariate (PM2.5 + meteorological and temporal features)

3Context Length: For bidirectional models, values represent pre/post gap context lengths

4Neural network models used Adam optimizer with learning rate = 0.001, trained for up to 30 epochs with early stopping (patience = 15). For all models, batch size = 32 was used during training