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Nonviral producer cell proteins incorporated into retroviral vector surfaces profoundly influence infectivity
and in vivo half-life. We report the purification and concentration of lentiviral vectors using these surface
proteins as an efficient gene transduction strategy. Biotinylation of these proteins and streptavidin paramag-
netic particle concentration enhances titer 400- to 2,500-fold (to 109 CFU/ml for vesicular stomatitis virus G
protein and 5 � 108 for amphotropic murine leukemia virus envelope). This method also uses newly introduced
membrane proteins (B7.1 and �LNGFR) directed to lentiviral surfaces, allowing up to 17,000-fold concentra-
tions. Particle conjugation of lentivirus allows facile manipulation in vitro, resulting in the transduction of 48
to 94% of human acute myeloid leukemia blasts.

Paramagnetic particles (PMP) are extremely efficient vehi-
cles for the capture and concentration of infectious retroviral
vectors (28). This property has since been confirmed for ret-
rovirus (39, 43) and extended to adenoviral (34, 39), adeno-
associated (30), baculoviral (37), and lentiviral (23) vectors.
We applied magnetic capture (28) to lentivirus pseudotyped
with vesicular stomatitis virus G protein (VSV-G) or ampho-
tropic envelopes (Fig. 1). Biotinylation of 293T and 293T-
Ampho cells was performed immediately prior to transfection
with 3.25 �g pCMV�R8.91 (46), 1.75 �g pMD.G (31), and 5
�g pLV.bla or 4 �g pCMV�R8.91 and 6 �g pLV.bla for
293T-Ampho cells. The self-inactivating LV.bla was con-
structed using the spleen focus-forming virus promoter, a cppt
fragment encompassing human immunodeficiency virus (HIV)
central polypurine tract/termination sequences (14), and
IRES-BLAST (18) in pHR�CMVGFPWSIN-18 (45). Lentivi-
ral vectors were harvested 48 h after transfection, 24 h after
replenishment with 10 mM sodium butyrate in Dulbecco mod-
ified Eagle medium plus 10% fetal calf serum. After 0.45-�m
filtration, lentivirus was used to infect K562 cells or agitated at
4°C with 1.25 � 109 Dynal MPC-E washed streptavidin Mag-
nesphere paramagnetic particles (Promega) per 5 ml superna-
tant. After 90 min the lentivirus-PMP mix was extensively

washed and magnetically concentrated and titers were deter-
mined by drug-resistant colony formation in 10 �g/ml Blasti-
cidin S (Invivogen) (28). The biotinylated VSV-G starting titer
of 4.4 � 106/ml was concentrated to 1.7 � 109/ml, representing
a 400-fold increase, while control vectors (6.3 � 106/ml) were
not captured and lost 99% of titer (C conc). Biotinylated am-
photropic vectors were concentrated to 5 � 108/ml, 2,600-fold
above the control, while capture efficiency indicates that 50%
of lentivirus evaded capture.

Biotinylation prior to transfection would not modify VSV-G
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FIG. 1. Biotin-dependent capture of 293T-derived lentiviral vec-
tors. For LV.bla vector supernatants from 293T (VSV-G) and 293T-
Ampho (amphotropic, stable transfection of the murine leukemia virus
4070A amphotropic envelope-encoding pALF [13] into 293T) cells
without (C) and with (B) biotinylation, titers were immediately deter-
mined on K562 cells in 4 �g/ml Polybrene. Alternatively, the vectors
were captured and magnetically concentrated 100-fold with streptavi-
din-PMP prior to titration (C conc and B conc). The remaining super-
natant following removal of the PMP (B Dep) was also used to infect
target cells as an estimate of the efficiency of capture.
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proteins; other biotinylated proteins must therefore associate
with lentiviral vectors for biotin-dependent capture. We inves-
tigated another surface protein, B7.1, for lentiviral capture
(Fig. 2). 293T cells transiently transfected to produce
LV.B7.1bla vectors (B7.1 from pWZLIL2/B7F [18] into
LV.bla) express the vector-encoded B7.1 (CD80) on the cell
surface, providing a potential handle for lentiviral capture. For
B7.1-dependent capture 1.25 � 109 PMP were serially conju-
gated (30 min) with 50 �l of 1-mg/ml protein A-biotin and 100
�l of 500-�g/ml B7.1 binding CTLA4-immunoglobulin (Ig)
(15, 20), and lentivirus was manipulated as before. Transient
B7.1 expression allowed 490-fold (VSV-G�LV.B7.1bla, Fig.
2A) or 7,000-fold (Ampho�LV.B7.1bla, Fig. 2B) concentra-
tion (to 8 � 108 and 2.5 � 109CFU/ml, respectively). Similarly,
stable expression of B7.1 by the 293T cells enabled B7.1-me-
diated concentration of LV.bla, resulting in 1,100- (VSV-G/
LV.B7.1bla�LV.bla, Fig. 2A) or 9,000-fold (Ampho/
LV.B7.1bla�LV.bla, Fig. 2B) titer increases. B7.1 labeling of
lentivirus enabled �70% capture, while B7.1-negative control
vectors could not be concentrated.

Titration of CTLA4-Ig in the B7.1-dependent vector capture
assay showed that a fivefold reduction was possible before
concentrate titer was reduced (data not shown). We then re-
placed CTLA4-Ig with 100 �l of 175-�g/ml mouse anti-human
B7.1 and protein A with 50 �l of 1-mg/ml biotin–goat anti-
mouse IgGFc (Table 1). The similarly efficient B7.1-mediated
concentration protocols indicate that the increased titer was
not due to fortuitous interactions of protein A, CTLA4-Ig, or

B7.1 with target cells (22). Vectors expressing a low-affinity
nerve growth factor receptor (NGFR), “LV.LNbla” (ligation
of �LNGFR [4] upstream of IRES-BLAST in LV.bla), could
be similarly captured with anti-NGFR-conjugated PMP (100
�l, 175 �g/ml anti-human NGFR). As with B7.1, this concen-
tration was specific to �LNGFR and did not result in the
concentration of control LV.bla vectors.

The relative ease of access to sufficient quantities of primary
human acute myeloid leukemia (AML) blasts suggests an im-
munotherapy strategy based on ex vivo genetic modification
(19). Observations that allogeneic bone marrow transplanta-
tion reduces relapse risk compared with autologous bone mar-
row transplantation (27) show that AML can be recognized by
the immune system and that AML is susceptible to allogeneic
antileukemic responses (9, 25). The potentially beneficial im-
mune response against AML blasts expressing costimulators
and/or proinflammatory cytokines has prompted efforts to de-
vise efficient strategies for their modification (6, 26, 29, 42). We
used B7.1-expressing 293T cells and green fluorescent protein
vectors (LV.gfp) to investigate the ability of PMP concentrated
vectors to infect AML blasts (6). We compared PMP concen-
tration with ultracentrifugation (8,600 � g, 4°C, overnight,
followed by 183,000 � g, 90 min, 4°C), each providing 100-fold
volume reductions (Fig. 3). Equimolar p24 adjusted vector

FIG. 2. B7.1-dependent capture of lentiviral vectors. Lentivirus was
produced from 293T cells by transient transfection of helper functions
with either LV.bla vector plasmids (VSV-G�LV.bla and
Ampho�LV.bla) or B7.1-encoding LV.B7.1bla vector plasmids (VSV-
G�LV.B7.1bla and Ampho�LV.B7.1bla). Alternatively 293T cells ex-
pressing B7.1 from a prior infection with the self-inactivating B7.1
vector (VSV-G/LV.B7.1bla and Ampho/LV.B7.1bla) were transfected
with LV.bla to result in VSV-G/LV.B7.1bla�LV.bla and Ampho/
LV.B71bla�LV.bla. The lentiviral affinity for CTLA4-Ig-conjugated
PMP was thus examined for vectors derived from B7.1-negative 293T
cells and compared with those derived from 293T cells expressing
either transient or integrated stable B7.1. Titers of VSV-G-
pseudotyped or amphotropic lentiviral vector supernatants were de-
termined on K562 cells (4 �g/ml Polybrene), either immediately with-
out concentration (C) or following capture and 100-fold concentration
with CTLA4-Ig-conjugated PMP (Conc). The remaining supernatant
following removal of the PMP (Dep) was used to infect target cells as
an estimate of capture efficiency.

TABLE 1. Comparative CTLA4-Ig and antibody-dependent capture
of lentiviral pseudotypesa

Treatment Titerb Fold
increase

%
Capture

V�LV.B7.1bla
Control 2.06 � 0.3
100 �g CTLA4-Ig 1,330 � 57 645 81
175 �g anti-B7.1 1,130 � 153 548 60

V � LV.LNbla
Control 1.3 � 0.46
175 �g anti-NGFR 866 � 115 666 52

V � LV.bla
Control 0.34 � 0.07
175 �g anti-NGFR 0.16 � 0.05 0

A � LV.B7.1bla
Control 0.72 � 0.015
100 �g CTLA4-Ig 4,560 � 288 6,307 95
175 �g anti-B7.1 2,900 � 265 4,011 80

A � LV.LNbla
Control 0.57 � 0.011
175 �g anti-NGFR 2,070 � 250 3,600 0

A � LV.bla
Control 0.09 � 0.01
175 �g anti-NGFR 0.16 � 0.07 1.7

a Titers of 293T cell-derived lentiviral vector supernatants (LV.B7.1bla,
LV.LNbla, and LV.bla), pseudotyped with VSV-G (V) or amphotropic (A)
envelopes, were determined on K562 cells (in 4 �g/ml Polybrene) either before
(control) or after capture and 100-fold concentration, using CTLA4-Ig, anti-B7.1
antibody, or anti-NGFR antibody-conjugated PMP. The concentrates and the
depleted supernatants remaining after the removal of the PMP were used to
infect K562 cells to determine the efficiency of both concentration (fold increase)
and capture (percent capture).

b Titers are shown as 106 CFU per milliliter for VSV-G envelopes and 105

CFU per milliliter for amphotropic envelopes.
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FIG. 3. Comparative infectivity of lentivirus in primary and established leukemia cells after concentration by either PMP or ultracentrifugation.
Lentiviral vectors expressing enhanced green fluorescent protein (LV.gfp) were prepared from stable B7.1-expressing 293T cells (VSV-G) or
293T-Ampho (Ampho) and concentrated 100-fold either by CTLA4-Ig-conjugated PMP capture (PMP) or by ultracentrifugation (Ultra). After
enzyme-linked immunosorbent assay determination of p24 Gag the viral concentrates were used at equimolar p24 levels to infect three
cryopreserved primary AML samples (A to C; patients 1 to 3, respectively) and the established leukemia cell lines U937 and K562 (D and E,
respectively) all in the presence of 4 �g/ml Polybrene. Fluorescence-activated cell sorting analysis of enhanced green fluorescent protein expression
was carried out 96 h after infection (black line, enhanced green fluorescent protein; shaded area, background). No enhanced green fluorescent
protein expression was detected for primary AML samples 2 and 3 following inoculation with amphotropic virus concentrated by either strategy
(data not shown). ND, not detected.
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concentrations were then used to infect primary AML blasts
cultured in X-VIVO medium with 20 ng/ml stem cell factor
and 10 ng/ml interleukin-3 (Fig. 3A to C) or U937 (Fig. 3D)
and K562 (Fig. 3E) cells in RPMI plus 10% fetal calf serum.
After 96 h the cells were analyzed by fluorescence-activated
cell sorting and titers were determined from �20% FL-1-
positive cell populations. Centrifuged VSV-G lentivirus (1 ng
p24) infected 10%, 15%, and 4% of AML samples, compared
with PMP rates of 35%, 41%, and 14%, respectively—a 2.7- to
3.5-fold-greater p24-to-infectivity ratio. Thus, the problematic
infection of primary AML cells (26) that was alleviated using
ultracentrifuged VSV-G enveloped lentivirus (6, 29, 42) can be
further improved upon by PMP concentration.

The amphotropic PMP concentrates provided low-level in-
fection in only one AML sample (Fig. 3A, patient 1, 10 ng p24,
4%), even though the K562 and U937 titers confirmed the
infectivity of amphotropic-PMP concentrates, 10 ng of p24
infecting 52% and 15% of cells, respectively. The inability of
amphotropic lentivirus to transduce AML was unexpected, as
it is the most efficient for cytokine-mobilized human CD34�

cell transduction (24).
Paramagnetic particle-conjugated virus is highly infectious,

demonstrating substantially higher levels of infectivity than are
explainable by concentration alone. The �LNGFR-labeled
vectors demonstrated this to a remarkable degree where de-
pletion (percent capture) was evident only for VSV-G
pseudotypes. Despite the fact that �LNGFR-labeled ampho-
tropic lentivirus did not appear to be efficiently captured (as
judged by depletion), a 3,600-fold vector titer increase was
observed. The high amphotropic/�LNGFR concentrate titer
suggests that the lentivirus become several orders of magni-
tude more infectious when anchored to the PMP. Unexpect-
edly large increases in titer have also been observed for other
vector/particle complexes and postulated to result from rapid
settling of the PMP-conjugated vectors onto target cells, pro-
motion of additional vector-target cell interactions (23, 28, 30,
34, 39), and the removal of inhibitory factors (41). We ad-
dressed these anomalies by preincubating B7.1-labeled LV.gfp
lentivirus with CTLA4-Ig/PMP for 90 min prior to infection.
This increased the effective titer of amphotropic lentivirus by
�150-fold to 2 � 107/ml, and when combined with a 100-fold
reduction in volume the titer increased to 1.9 � 109/ml. This
suggests that increased titer is substantially derived from im-
proved viral presentation to target cells rather than the puri-
fication from supernatant-derived inhibitors of infection.

The presence of nonviral proteins on lentiviral surfaces is
consistent with numerous studies showing host-derived pro-
teins copackaging with HIV virions (1, 16, 17, 32, 36). Remod-
eling of lentiviral surfaces, as exemplified by B7.1 and
�LNGFR, allows new antibody-antigen or receptor-ligand in-
teractions for concentration. Although VSV-G pseudotypes
remain infective after ultracentrifugation (5), there are limita-
tions in scale-up and contaminant coconcentration (10, 41) and
an apparent limit of 2,000-fold to concentration (11, 12, 24, 38,
44). Moreover, vectors from different sources (2) and with
alternative or reengineered targeting envelopes (3, 21, 33, 40)
may be particularly sensitive to centrifugation (35). Thus, mag-
netic concentration not only is a useful purification technology
but also allows the use of additional factors for capture and/or

targeting strategies that are not dependent on the modification
of viral envelope proteins (7, 8).
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