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Nonlinear Sequence-Dependent Structure of Nigral Dopamine Neuron
Interspike Interval Firing Patterns
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*Department of Psychiatry, Yale University School of Medicine, and tDepartment of Pharmacology, Yale University School of Medicine,
New Haven, Connecticut USA

ABSTRACT Firing patterns of 15 dopamine neurons in the rat substantia nigra were studied. These cells alternated between
two firing modes, single-spike and bursting, which interwove to produce irregular, aperiodic interspike interval (ISI) patterns.
When examined by linear autocorrelation analysis, these patterns appeared to reflect a primarily stochastic or random
process. However, dynamical analysis revealed that the sequential behavior of a majority of these cells expressed "higher-
dimensional" nonlinear deterministic structure. Dimensionality refers to the number of degrees of freedom or complexity of
a time series. Bursting was statistically associated with some aspects of nonlinear ISI sequence dependence. Controlling for
the effects of nonstationarity substantially increased overall predictability of ISI sequences. We hypothesize that the nonlinear
deterministic structure of ISI firing patterns reflects the neuron's response to coordinated synaptic inputs emerging from
neural circuit interactions.

INTRODUCTION

Dopamine (DA) neurons in the substantia nigra are thought
to help regulate sensorimotor integration by mammalian
striatal systems (Alexander and Crutcher, 1990; Marshall
and Gotthelf, 1979; Schneider, 1991; Vives and Mogenson,
1986). Nigral DA neurons have two modes of firing: single-
spike and bursting (Bunney et al., 1973; Grace and Bunney,
1984a, b). Single-spike mode firing yields interspike inter-
vals (ISIs) that vary widely and appear random, whereas
bursting consists of one or more relatively reduced ISIs
followed by an extended ISI. Bursting induces large in-
creases in postsynaptic efficacy not accounted for by
changes in firing rate (Gonon, 1988; Bean and Roth, 1991).
Measures of DA neuron behavior generally assume stochas-
tic (random) firing with some central tendency, e.g., mean
firing rate or percent spikes in bursts, appraised by statistical
averaging.

However, burst and single-spike firing modes interweave
to produce irregular ISI patterns that statistical averaging
ignores. ISI patterns of nigral DA neurons reflect interac-
tions with nonnigral neural circuitry. This is demonstrated
by recordings of DA cells in in vitro slice preparations
where nonnigral inputs have been eliminated. Under these
conditions variability of ISIs is dramatically reduced (Sang-
hera et al., 1984; Shepard and Bunney, 1988; Silva and
Bunney, 1988).
Many neuronal systems express deterministic properties

by virtue of rhythmic behaviors detectable by linear analy-
ses such as the power spectrum or the autocorrelation func-
tion (Chang et al., 1994). Dynamical analysis has now
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provided tools that can also detect nonlinear deterministic
properties of time series. Such determinism produces irreg-
ular, aperiodic behavior that traditional linear analyses
would interpret as stochastic or random (Chang et al., 1994;
Sugihara and May, 1990; Tsonis and Elsner, 1988; Tidd et
al., 1993). Nonlinear methods have recently been used to
study the behavior of neurons and neuronal ensembles
(Longtin, 1993; Chang et al., 1994; Schiff et al., 1994; Rapp
et al., 1994). Computer models of even very simple neural
networks suggest that firing patterns of neurons will exhibit
sequence-dependent nonlinearities owing to circuit interac-
tions (Chapeau-Blondeau and Chauvet, 1992; Lewis and
Glass, 1992). Nonlinear deterministic behavior may have
physiological or computational significance distinct from
oscillatory processes.
Chang et al. (1994) found oscillatory linear structure in

4/4 recordings of cat spinal cord motoneuron ensembles
recorded in the decerebrate state and nonlinear structure in
2/4 of these recordings. In contrast, five motoneuron en-
sembles demonstrated neither linear nor nonlinear structure
when studied in the spinalized state where circuitry provid-
ing input to these cells is significantly curtailed. Schiff et al.
(1994) detected nonlinear structure in 1/6 populations of
hippocampal cells in slice preparations that were induced to
burst spontaneously by potassium perfusion. Rapp et al.
(1994) demonstrated greater levels of ISI nonlinear struc-
ture in spontaneously firing rat cortical neurons relative to
activated states secondary to penicillin epileptogenesis. In
the former group, 4/7 cells demonstrated statistically signif-
icant evidence of nonlinear structure.
The prevalence of nonlinear determinism expressed by a

larger sample of neurons of a particular type remains unex-
plored. DA cells are of special interest because they spon-
taneously produce richly textured ISI patterns, and their
physiological properties have been extensively studied (for
a review see Bunney et al., 1991). Therefore our first goal
was to assess to the prevalence and nature of sequence-
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dependent nonlinearities for an expanded sample of these
neurons.

Our second goal was to estimate, at least roughly, the
"dimensionality" of DA neuron firing patterns. Dimension-
ality is a measure of complexity that correlates with the
number of degrees of freedom of a time series-in other
words, the number of essential variables needed to model
dynamical processes producing the behavioral fluctuations
measured over time (Denton and Diamond, 1991; Farmer et
al., 1983; Rapp et al., 1985).
Our third goal was to assess the relationship between

bursting and nonlinear structure of ISI sequences. Many cell
types exhibit burst firing where activation momentarily
predisposes the cell to further activation (Bunney et al.,
1991; Freeman and Bunney, 1987; Legendy and Salcman,
1985; Sparks and Mays, 1980; White et al., 1989; Wong and
Prince, 1981; Wong and Stewart, 1992). In DA neurons,
bursting is likely to reflect, at least in part, intracellular
calcium influx, which promotes additional spike activity
(Grace and Bunney, 1984b). It is possible therefore that
nonlinear structure of DA neuron ISIs arises primarily from
burst-associated physiological properties of the neuron itself
rather than from the temporal organization of its synaptic
inputs.

Our fourth goal was to assess whether nonstationarity
altered our assessments of deterministic structure. It is pos-
sible that ISI firing patterns lack a clearly fixed mean; if so,
assessments of deterministic structure should control for
this factor.

in the substantia nigra zona compacta region, ii) a distinctive extracellular
action potential waveform of long duration (1.8 to 4 ms) with initially
positive action potentials followed by a prominent negative component, iii)
characteristic firing patterns consisting of either irregularly distributed
single spikes or bursts with spikes of decreasing amplitude and increasing
duration, and iv) firing rate typically of 2 to 8 Hz.

Spike identification occurred if the action potential exceeded a positive
height threshold set to capture all spikes generated by the cell being studied
but clearly exceeding the random fluctuations of baseline signal potentials.
Data collection was not initiated until the absence of drift in action
potential height was clearly established. Recordings were then continu-
ously screened during data collection to ensure that action potential height
and baseline noise level did not change.

Batch processing by our software required a uniform data set size,
which was set at 2100 and 2400 ISI events. The refractory period of DA
cells was assumed to be approximately 10 ms (Grace and Bunney, 1980;
Yeomanns et al., 1988). Consequently any data sets with ISIs < 10 ms
were not further analyzed. To be included in the study, cells were required
to have evidence of greater than 10 occurrences of bursting. Bursts were
defined in the standard fashion, namely, an initial ISI < 80 ms optionally
followed by later ISIs of <160 ms (Grace and Bunney, 1984b). Beyond
meeting these criteria, cells were selected randomly for analysis. Two cells
were rejected because of insufficient bursting, and seven cells were re-
jected because of ISIs of <10 ms. This left a total of 15 nigral DA cells
which met our inclusion criteria and formed the ISI database for our study.

Mathematical background
In general, the simplest type of sequence-dependent time series structure
consists of combinations of periodic oscillations that can be represented as
follows:

n

xt = ,i * Xt-i + E,
i=l

(1)

MATERIALS AND METHODS

Experimental preparation

We studied Sprague-Dawley rats weighing 160-300 g, using low cerveau

isole preparations (Bunney and Aghajanian, 1976; Sesack and Bunney,
1989). The brain stem was transected after the animal was initially anes-

thetized with halothane, and then locally anesthetized by infiltration of a

long-acting local anesthetic, 2% mepivcaine hydrochloride, at all pressure

points and incision sites. A small burr hole was drilled 2 mm caudal to the
lambdoidal suture and 1 mm medial to the bony ridge at the lateral edge of
the skull. To transect the brain stem, a 30-gauge, half-in. needle was

inserted at a 30-deg angle relative to the coronal plane and rotated, parallel
to the lambdoidal suture, until the needle was at a 90-deg angle. Halothane
anesthesia was discontinued for at least 30 min before physiological
recordings were generated. Throughout the recording period, body tem-
perature was maintained at 35-380C.

Single unit activity of DA neurons in the substantia nigra was monitored
as described previously (Bunney et al., 1973). Glass microelectrodes were

made by using a Narishiga electrode puller and filled with 1-M NaCl
solution containing 2% Pontamine Sky Blue dye. The tip of the electrode
was broken back under microscopic examination to a diameter of 1-3 ,um
and resistance established between 5 and 15 MQl. A small burr hole was

drilled above the substantia nigra (2.5 mm anterior to the lambdoidal suture
and 2.0 mm lateral to the midline), and the electrode was lowered 6.5-8.5
mm below the cortical surface.

Spike identification and calculation of interspike intervals utilized mod-
ified LabView Data Acquisition software (National Instruments, Austin,
TX) and a PC' interface (National Instruments) linked to an IBM-486
compatible computer.
DA neurons were identified based on well-established criteria (Bunney

et al., 1973, Grace and Bunney, 1980, 1983) including i) anatomic location

where x, is the most recent event, xt_i is the event for the ith step in the
past, ai is the corresponding linear prediction coefficient, and e is Gaussian
noise (Theiler et al., 1992). A more complex form of sequence-dependent
structure is the following:

Yt = h(xt), (2)
where xt is an input function represented in Eq. 1 and the output, Yt, is a
distortion of x, derived from a nonlinear function h (Theiler et al., 1992).
Time series of this sort are said to have static nonlinear structure. In
contrast, sequence-dependent nonlinear structure has the following general
form:

xt = f(xt-1 Xt-2, ...* ,Xn) + E, (3)
where f is a nonlinear function with arguments corresponding to one or
more events occurring at different points in the system's history (Nychka
et al., 1992). Each of these three types of time series has sequence-
dependent structure. The challenge is differentiating the first two varieties,
which emerge from stochastic noise and linear oscillations, from sequence-
dependent nonlinearity reflected by Eq. 3.

Assessing sequence-dependent structure
Linear structure was assessed by using the autocorrelation function, which
calculates the linear correlation of a time series with itself across different
event lags (the "delay" in terms of number of events or ISIs used to create
an alternative data set that is correlated with the original data set; Box and
Jenkins, 1976; see also Appendix Al).
We used two different approaches for detecting nonlinear sequence-

dependent structure of ISI firing patterns.
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The first approach is referred to as nonlinear prediction (Longtin, 1993;
Chang et al., 1994; Schiff et al., 1994). Given an index set of observations
xt, xt+19 ... Xt+n-1 belonging to {xj, the task is to predict the next obser-
vation, xt+n. Alternative sequences of observations in the data set {xJ}
similar to the index sequence are sought, and an average of their move-
ments to next observations is computed. This average is compared with
actual observed event, Xl+n (see Appendix A3 for details).

Our second approach maps a sequence of observations {xj} into a set of
n-dimensional state vectors {xt} according the following process: xt is the
first coordinate, xt+1 is the second coordinate, etc., with xt+n-1 being the
last coordinate (Grassberger and Procaccia, 1983; Tsonis and Elsner,
1988). Thus a sequence of observations is translated into a "cloud" of
points in the state space. Any pair of these points has a measurable distance
separating them. "From this 'cloud' the number of pairs can be found, N(r,
n) with distances less than r" (Tsonis and Elsner, 1988). The variable r can
therefore be thought of as a spatial cutoff that determines whether different
points in the n-dimensional space are counted as neighbors (see Appendix
A2 for details). For data sets with significant sequence-dependent structure,
the expansion of N(r, n) occurs more "gently," i.e., over a much larger
domain of r, than for an observational set with the same distribution
sequenced randomly. If, for significantly small r,

N(r, n) oc rd,

then d, the scaling exponent, estimates correlational complexity of the
observed sequence relative to the embedding dimension n (Tsonis and
Elsner, 1988; see also Appendix A2).

Our strategy for detecting nonlinear structure also utilized Gaussian-
scaled surrogates of data sets (Rapp et al., 1993; Theiler et al., 1992; Chang
et al., 1994; see Appendix A3 for the algorithm). These surrogate data sets
approximate linear correlative structure (Eq. 1) and duplicate static mono-
tonic nonlinearity (Eq. 2) while destroying sequence-dependent nonlinear
structure (Eq. 3). Our criterion measurements of determinism (nonlinear
prediction and correlational complexity) were applied to each original data
set and 10 corresponding Gaussian-scaled surrogates. To estimate promi-
nence of such nonlinearity for individual data sets, S scores were calculated
(Theiler et al., 1992; Rapp et al., 1993). For nonlinear prediction

S = (po - (Ps))/oS, (4a)

where p0 is the predictability of the original data set and (p5) and oa are the
mean and the standard deviation of predictability of the 10 corresponding
surrogates. If predictive nonlinearity were present, p0 should be greater
than p,.

For correlational complexity, S scores were calculated as

S = ((Ce)-C.)/os

where a = 0.2, b = 0.1, and Tis varied. Time series generated with T= 23 and
T = 100 are illustrated in Fig. 1, A and B. They correspond to nonlinear
"chaotic" systems with dimensionality roughly equal to 2.4 and 7.5 (Grass-
berger and Procaccia, 1983). To assess the sensitivity of this method in
detecting higher-dimensional nonlinearity, two different 7.5-dimensional
Mackey-Glass time series were summed to create a time series with putative
dimensionality of 15 (Fig. 1 C). A fourth time series was generated by adding
Gaussian noise to the 2.4-dimensional Mackey-Glass system such that the
amplitude of former was 70% of the latter (Fig. 1 D).

After demonstrating that our methods could detect higher-dimensional
and noise-contaminated nonlinearity, we applied them to ISI data sets
generated by DA cells. Also calculated were the mean and the standard
deviation of ISIs within each data set, skewness of ISI distributions, and
percent of spikes in bursts.

Finally we wished to assess the effects of nonstationarity that were due
to local shifts in mean ISI (see Fig. 3 A, for example). This was accom-
plished by "first-differencing" each data set, i.e., Xl, X2, ... xm is trans-
formed into x1-X2, X2-X3, ..., Xmn- Xm. Dynamical analyses of first-
differenced data sets were then repeated (Box and Jenkins, 1976; Sugihara
and May, 1990).

All tests of statistical significance were two-tailed.

RESULTS

Mackey-Glass systems

The results of our methods applied to 2400-element
Mackey-Glass data sets are listed in Table 1. As "true
dimensionality" increased, correlational complexity in-
creased and nonlinear prediction decreased. Both mea-
sures of sequence-dependent structure combined with
Gaussian-scaled surrogates performed well in detecting
noise-free Mackey-Glass nonlinearity, even with dimen-
sionality of 15. S values remained seven sigmas or above
when both structural measures and both embedding di-
mensions were used. However, nonlinear prediction was
somewhat more robust than correlational complexity in
detecting Mackey-Glass nonlinearity embedded in noise;
S values generated by the complexity method were less
than seven sigmas, whereas S values generated by the
prediction method remained greater than seven sigmas.

(4b)

where (cs) is the mean correlational complexity of the 10 surrogates, co is
the correlational complexity of the original data set, and o- is the standard
deviation of the surrogates. If correlational nonlinearity were present, c.
should be less than cs.

S values are expressed as "sigmas" because they are scaled against aos.
As suggested by Longtin (1993), an S value of three or more sigmas was
interpreted as indicating significant sequence-dependent nonlinearity for
individual cells.

Surrogate methods for assessing sequence-dependent structure were
tested initially by Chang et al. (1994) using the Heion map, a completely
deterministic "low-dimensional" system based on two variables and a
single nonlinear component. Neuronal behavior may not reduce to such
mathematical simplicity, however. Therefore we wished to assess the
ability of our two structural measures, combined with Gaussian-scaled
surrogates, to detect sequence-dependent nonlinearity by using known
formal systems with higher dimensionality and with noise contamination.
For this purpose we used second-order approximations of the Mackey-
Glass differential equation (Grassberger and Procaccia, 1983, p. 207)

dx(t) ax(t - T)
dt 1 + [x(t- )]-bx(t), (5)

0 100 200 300 400 500 0 100 200 300 400 500

FIGURE 1 Four different Mackey-Glass data sets: A, a 2.4-dimensional
system; B, a 7.5-dimensional system; C, the sum of two different 7.5-
dimensional systems; D, the sum of a 2.4-dimensional system and noise
whose amplitude is 70% of the former. The X axis corresponds to number
of time series events. The irregularity of time series appears to increase as
dimension increases or with the addition of noise.
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TABLE I Dynamical analyses of Mackey-Glass systems based on comparisons with Gaussian-scaled surrogates*

MG-2.4 MG-7.5 MG-15 MG-2.4+Nt

Embedding Dimension rsil ST rs1 SI rs'l SI rs ST

Nonlinear prediction
4 0.95 68.7 0.80 40.0 0.47 7.17 0.38 12.0
7 0.94 48.8 0.66 24.4 0.51 8.54 0.39 8.37

Correlational complexity ct S§ ct S ct S§ ct Sf

4 1.92 71.9 2.63 38.6 3.4 7.01 3.27 2.35
7 2.09 86.6 3.72 40.8 5.01 8.16 5.21 6.70

*MG number refers to the dimensionality of the formal Mackey-Glass system.
$2.4-Dimensional Mackey-Glass system plus noise whose amplitude is 70% of the former.
IlSpearman-rank correlation between observed and predicted events.
'Sigma scores calculated on the basis of 10 surrogates and Eq. 4a.
tCorrelational complexity.
'Sigma scores calculated on the basis of 10 surrogates and Eq. 4b.

DA cell data analysis

Fig. 2 illustrates ISI progressions for four representative DA
cells. Compared visually with Mackey-Glass formal sys-

tems illustrated in Fig. 1, ISI data sets appeared to demon-
strate irregularity consistent with higher dimensionality or

significant noise contamination. Fig. 3 illustrates the fine
structure of this progression for one cell with demarcation
of burst periods. Table 2 provides standard descriptive data
for the 15 cells.

Autocorrelation analysis of the ISI data sets revealed only
traces of linear structure most commonly expressed as small
adjacent event (i.e., lag equaling 1) negative autocorrela-
tions. However, no significant oscillatory resonances were

detected for any cell. Representative autocorrelation func-
tions are illustrated for three cells in Fig. 4 A. Autocorrela-
tions were also calculated for Gaussian-scaled surrogates.
The linear structure of the latter was found to approximate
successfully the linear structure of original ISI data sets (see
Fig. 4 B).

2O

Mean ± SD nonlinear prediction scores for ISI data sets
(corresponding to values of r5 averaged across the 15 cells)
was 0.25 ± 0.09 for an embedding dimension of 4 and
0.24 ± 0.09 for an embedding dimension equal to 7. These
measures were considerably lower than those produced by
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FIGURE 2 Representative subsets of ISI progressions for four different
DA cells. The X axis corresponds to ISI events. A has relatively few bursts,
whereas B-D have relatively high burst penetration. B is somewhat unusual
insofar as ISIs are tightly clustered within the 100-200-ms range but much
longer ISIs (>400 ms) occur episodically.

FIGURE 3 Demarcation of bursts. A, Blow-up of 300 consecutive ISIs.
Dashed lines reflect thresholds for entering and exiting bursts. Some drift
in the mean ISI seems apparent at this level of detail. B, More-detailed
view of the middle 100 ISIs. The square denotes a two-spike burst. Heavy
lines denote more extended burst periods. The reduced ISIs of a burst are
immediately followed by an extended ISI that exceeds the local mean. This
pattern could be a source of sequential structure.

f

ll
r-

Hoffman et al. 131

L.

..VFT "--, - I 11 IF

.



Volume 69 July 1995

TABLE 2 Characteristics of DA cells (N = 15)

Characteristic Mean ± SD Range

Mean ISI* 162 ± 30 130-246
ISI variability* 83.7 ± 25.6 52.5-142.2
Skewness 1.08 ± 0.86 0.11-2.93
% Spikes in bursts 26.8 ± 16.4 2.3-47.1

*In milliseconds.
*Calculated as standard deviations.

any of the Mackey-Glass systems that we studied (see
Table 1). Mean ± SD correlational complexity was 3.21 ±
0.21 for an embedding dimension of 4 and 4.61 ± 0.70 for
an embedding dimension of 7, which fell between correla-
tional complexities for the Mackey-Glass 7.5- and 15-
dimensional systems (see again Table 1).
The null hypothesis that ISI progressions reflect noise

conditioned by linear autocorrelation and static monotonic
nonlinearity was tested. Pairwise t-tests reflecting the dif-
ference between nonlinear prediction scores of raw data for
all 15 cells and mean prediction scores of their correspond-
ing Gaussian-scaled surrogates were strongly significant for
an embedding dimension equal to 4 (t = 5.79, df = 14, p <
0.0005) and an embedding dimension equal to 7 (t = 4.94,

B

L<--~~~~~~~~~~~~~~~~~~~~~~~

1 A

0.5 -

0 .

-0.5

df = 14, p < 0.0005). Pairwise t-tests reflecting the differ-
ence between correlational complexity scores of raw data
and mean scores of surrogates were also strongly significant
for an embedding dimension equal to 4 (t = 5.94, df = 14,
p < 0.0005) and moderately significant for an embedding
dimension equal to 7 (t = 2.58, df = 14, p < 0.05).
Therefore the null hypothesis can be rejected with a high
level of confidence.

Fig. 5 illustrates corresponding S scores for individual
cells. Using a cutoff S value of three sigmas, nonlinear
prediction identified nonlinear sequential ISI structure in a
total of 10 out of 15 cells for both embedding dimensions.
There was some disagreement in classifying individual
cells, however. An embedding dimension of 7 identified cell
1 as having significant nonlinear structure, whereas cell 2
had a sigma score below the cutoff. An embedding dimen-
sion of 4 reversed the classification of these two cells.
Classifications of the remaining 13 cells were identical
based on the two embedding dimensions. Correlational
complexity detected nonlinear structure in a total of 9 out of
15 cells for both embedding dimensions. There was dis-
agreement in classifying 3 of 15 individual cells (cells 2, 10,
and 15; see again Fig. 5) when complexity-based sigma
scores were compared for the two embedding dimensions. S
values generated by nonlinear prediction versus correla-
tional complexity for particular embedding dimensions did
not correlate at a statistically significant level (for an em-
bedding dimension equal to 4; Spearman rank rs = 0.23; for
an embedding dimension equal to 7, r5 = 0.45).
The effects of bursting on the expression of nonlinear

structure were assessed by computing correlations between
S scores and other characteristics of ISI data sets (Table 3).
Three of four measures of nonlinearity yielded positive

40 r
Correlational complexity (e.d. = 7)
Correlational complexity (e.d. = 4)

------- Nonlinear prediction (e.d. = 7)
---- Nonlinear prediction (e.d. = 4)

10o
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FIGURE 4 A, Autocorrelation functions for three representative ISI data
sets. The first and third cells began with a small negative autocorrelation
for adjacent events but converged in a "noiselike" fashion to near-zero
levels at larger event lags. The second cell demonstrated a near-zero
autocorrelation for event lag of one with small positive correlations for
later phase lags. None of the three cells generated evidence of sustained
oscillatory organization. B, Corresponding autocorrelation functions for
three Gaussian-scaled surrogates for each of the three data sets; surrogates
overlap extensively and are often not distinguishable. The linear structure
in A is closely approximated by the surrogates.

FIGURE 5 S scores for the 15 neurons calculated for nonlinear predic-
tion and correlational complexity measures of determinism and both em-
bedding dimensions. For nonlinear prediction, the mean ± SD S score
equaled 4.80 ± 4.71 for an embedding dimension of 4 and 5.14 ± 4.78 for
an embedding dimension of 7. For correlational complexity, mean ± SD S
scores equaled 3.92 ± 2.56 for an embedding dimension of 4 and 8.07 ±
9.10 for an embedding dimension of 7. The dotted line represents the S
score cutoff of three sigmas. Other dynamical measure methods sometimes
identified different cells as having nonlinear structure (see, for instance,
cells 5 and 11).
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TABLE 3 Spearman-rank correlations between nonlinearity
measures (S scores) and ISI characteristics*

Nonlinear Prediction Complexity

Characteristic e.d. = 4 e.d. = 7 e.d. = 4 e.d. = 7

Mean ISI -0.26 -0.38 -0.59 -0.23
ISI SD 0.55 0.48 -0.11 0.04
Skewness -0.17 0.22 -0.17 -0.24
% Spikes in bursts 0.61 0.69§ 0.53 0.16

*e.d., Embedding dimension.
p < 0.01.

B
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1 -A
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0

correlations between S scores and percent of spikes in
bursts; however, when a p-value criterion of 0.01 that was
due to multiple statistical comparisons was used, only one
of these correlations reached statistical significance. More-
over, the surrogates used in this study also demonstrated
"bursting" as defined formally in the Methods section.
Mean burst length (counted as number of spikes) was com-
puted for each DA cell and its surrogates. Burst length was
found to be slightly reduced in surrogates relative to actual
cells, but not significantly so (3.17 ± 0.72 spikes for sur-
rogates, 3.32 ± 0.87 spikes for cells, t = 1.81, df = 14,
p < 0.10). These findings suggest that sustained excitability
resulting from bursting is unlikely to be the sole source of
sequence-dependent nonlinear structure. Correlations be-
tween S scores and other characteristics of ISI data sets were
computed (Table 3). Mean, standard deviation, and skew-
ness of ISIs did not produce statistically significant corre-
lations with sigma scores.
To assess the effects of nonstationarity, all analyses were

repeated for first-differenced data sets. There was a note-
worthy shift in adjacent event autocorrelation scores.
Whereas original data sets sometimes demonstrated small
adjacent event autocorrelations (mean + SD = -0.08 +

0.19), adjacent event autocorrelations of differenced data
were consistently and robustly negative (mean + SD =
-0.53 ± 0.09; see Fig. 6 A for examples). Autocorrelations
at larger event lags quickly collapsed to near zero, suggest-
ing a near-stochastic sequential process.

Corresponding increases in predictability of first-differenced
data sets were also observed (Fig. 7, top). The mean ± SD
nonlinear prediction score for an embedding dimension of 4
increased to 0.64 ± 0.08 (from 0.25 ± 0.09 for untransformed
data sets). The mean ± SD nonlinear prediction score for
an embedding dimension of 7 increased to 0.59 ± 0.07 (from
0.24 ± 0.09 for untransformed data sets). However, mean
correlational complexity measures changed little for first-
differenced data sets relative to untransformed data sets
(3.19 versus 3.21 for an embedding dimension of 4 and 4.47
versus 4.61 for an embedding dimension of 7; see Fig. 7,
bottom). Mean correlational complexity and nonlinear predic-
tion measures of differenced ISI data sets all fell between those
of the 7.5-dimensional and the 15-dimensional Mackey-Glass
system (see Table 1).

Autocorrelation analysis again demonstrated that Gauss-
ian-scaled surrogates successfully approximated linear

-0.5~
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FIGURE 6 A, Autocorrelations for first-differenced data sets for the
same three cells illustrated in Fig. 4. Autocorrelation at the first event lag
is now consistently and robustly negative. For cell 2, persistent positive
autocorrelations have disappeared, suggesting that they were due to drift in
mean ISI. Sustained oscillatory trends are still not evident. B, Autocorre-
lations for three (largely overlapping) Gaussian-scaled surrogates for each
of these cells. Once again, linear structure represented in A is closely
approximated by surrogates.

structure of first-differenced data sets (Fig. 6, B). There was
little change in the extent to which nonlinearity was delin-
eated by surrogate analysis of first-differenced data. Mean
sigma scores were roughly unchanged; for each of the four
dynamical variables (nonlinear prediction and correlational
complexity calculated for the two embedding dimensions)
9/15 cells demonstrated statistical evidence of nonlinear
structure with sigma scores exceeding three. For nonlinear
prediction, mean ± SD S score equaled 5.39 ± 6.99 for an
embedding dimension of 4 and 3.89 ± 4.33 for an embed-
ding dimension of 7. For correlational complexity, mean +
SD S scores equaled 6.08 ± 5.12 for an embedding dimen-
sion of 4 and 6.86 ± 5.11 for an embedding dimension of 7.
No correlation between sigma scores for first-differenced
data and percent bursting achieved statistical significance at
a 0.01 criterion level (values of rs ranged from 0.18 to 0.59).
Spearman-rank correlations between sigma scores for first-
differenced data and other characteristics of ISI data sets
(mean, standard deviation, and skewness of ISIs) were also
not statistically significant.

DISCUSSION

Testing our methods with formal Mackey-Glass systems
demonstrated that both nonlinear prediction and correla-
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FIGURE 7 Nonlinear prediction and correlational complexity scores for
the 15 ISI data after first-differencing. Different embedding dimension
produced very consistent shifts in these two dynamical measures.

tional complexity are sensitive to higher-dimensional non-

linear structure. A somewhat surprising finding was that the
former was more robust in detecting nonlinear structure
embedded in noise. Perhaps this reflects the fact that non-

linear prediction includes an averaging procedure that buff-
ers noise effects.
Our central empirical finding was that the 15 DA cells,

considered as a group, yielded robust statistical evidence of
nonlinear sequential structure. Nonlinear prediction and
complexity measures of nigral DA cell ISI time series were

different from identical measures applied to surrogate data
sets with a high level of statistical certainty for both em-

bedding dimensions. S values for individual neurons were

greater than three sigmas in a majority of cells evaluated by
both deterministic measures and two different embedding
dimensions.

Significant nonstationarities were found in our data. The
fact that nonlinear prediction scores more than doubled after
differencing ISI data sets indicates that these data often
lacked a fixed mean. The major effect of this transformation
was to highlight linear rather than nonlinear structure, how-
ever. This is reflected in the much more robust adjacent
event autocorrelations induced by differencing data and the
fact that this transformation did not produce any increase in
sigma scores.

First-differencing ISI data provided correlational com-

plexity and nonlinear prediction scores whose means con-

sistently fell between means for the same variables calcu-

lated for 7.5- and 15-dimensional Mackey-Glass systems
using the same embedding dimensions and data set sizes.
These findings suggest that the dimensionality of sequential
structure expressed by DA neurons recorded using low
cerveau isole preparations may have had a similar range.
Significant levels of stochastic noise added to deterministic
processes, however, cannot be ruled out as a factor contrib-
uting to erratic ISI patterns and the appearance of higher
dimensionality (see again Table 1).
Our interest in linear structure derives from the report by

Chang et al. (1994). Only cells in their decerebrate prepa-
rations demonstrated evidence of nonlinear structure; these
cells also demonstrated prominent oscillatory linear struc-
ture, suggesting that nonlinearity delineated by their meth-
ods reflected primarily "quasi-periodic" processes. In con-
trast, the majority of DA cells in our sample demonstrated
nonlinear structure even though autocorrelation data did not
demonstrate significant periodic organization.
We found that the percentage of spikes in bursts partially

correlated with some measures of nonlinear sequential ISI
structure. This is consistent with the view that bursting
reflects sequence-dependencies, i.e., sustained reductions in
ISIs followed by a prolonged ISI (see again Fig. 3). How-
ever, these correlative findings were lost when our data sets
were first-differenced, even though evidence of nonlinear
structure remained. Moreover, an examination of "burst
behaviors" of the Gaussian-scaled surrogates demonstrated
that burst length was not statistically different compared
with that in the original data sets. Thus bursting itself,
although it is a conspicuous feature of DA cell behavior in
our study, clearly cannot account for all sequential nonlin-
earities detected by our methods.
At least two confounding issues need to be considered

when weighing our findings. First, our two measures of
determinism produced S values for DA cells that only
weakly correlated with each other, suggesting that they
reflect different aspects of sequence-dependent structure.
This makes intuitive sense. Nonlinear prediction reflects the
degree that ISI sequences predict ensuing events. However,
there are types of sequential structure that are not at all
predictive of future observations. An example is a language
that conforms to a particular grammar. One cannot predict
which word will follow another in a particular sentence
even though word choice is highly constrained (e.g., subject
nouns, in general, are followed by verbs). In general, non-
linear prediction varied little when embedding dimension
was altered, whereas correlational complexity was very
sensitive to embedding dimension. On the other hand, cor-
relational complexity was little changed by differencing
data sets but nonlinear prediction was considerably en-
hanced. It will be important to compare and contrast further
the performance of various dynamical measures employed
in this and other recent studies (Chang et al., 1994; Schiff et
al., 1994; Rapp et al., 1994).

Second, Gaussian-scaled surrogates control for static
monotonic nonlinearity (i.e., the h function in Eq. 2) but not
for static nonmonotonic nonlinearity. Static nonlinear non-

9 -S;
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monotonic effects on DA neuron firing are known to occur.
For instance, depolarization at times can induce bursting yet
at other times block firing by means of depolarization
inactivation (Grace and Bunney, 1986; Bunney et al., 1991).
The degree to which such effects shape the pattern of DA
cell ISIs over time is not known. If these effects are signif-
icant, overestimations of sigma scores can result.
As a model to account for our findings, we hypothesize

that sequential ISI nonlinearities detected in our study de-
rive from deterministic aperiodic nonnigral synaptic inputs
to these cells that are coordinated by larger neural circuit
interactions. Some coordinated synaptic inputs may result in
pronounced bursting and nonlinear structure, and other co-
ordinated synaptic inputs may induce nonlinear structure
even if burst activity is not extensive.

Nigral DA neurons receive excitatory and inhibitory in-
puts from many interconnected sources (Alexander and
Crutcher, 1990), including the corpus striatum (Grace and
Bunney, 1985), the dorsal raphe nucleus (Steinbusch and
Niewenhuys, 1983), the subthalamic nucleus (Smith and
Grace 1992), and other neurons within the substantia nigra
itself (Bunney et al., 1991); these inputs are mediated by
both chemical neurotransmitters and electrotonic coupling
(Bunney et al., 1991; Grace and Bunney, 1985). Coordi-
nated synaptic input yielding sequential nonlinear structure
could derive from the collective interactions of these brain
areas.
To explore this model in a preliminary fashion we have

analyzed ISI data sets from two cells recorded in in vitro
slice preparations from which nonnigral synaptic inputs
were completely eliminated (R. E. Hoffman, W.-X. Shi, and
B. S. Bunney, unpublished data). These data sets retained
some variability (ISI standard deviations were 20 and 30
ms, respectively, presumably as the result of intrinsic con-
nections within the substantia nigra or of characteristics of
spontaneously firing neurons), although they were much
reduced in comparison with ISI data recorded from intact
animals (for which ISI standard deviations ranged from 52
to 142 ms). After first-differencing data, significant adjacent
event autocorrelations were again detected (-0.39 and
-0.40 for the two cells). However, correlational complex-
ities were higher and nonlinear prediction scores were lower
than for cells recorded in vivo, and all eight sigma scores
(calculated for the two cells, both dynamical measures, and
embedding dimensions set at 4 and 7) were less than the
cutoff of 3. In short, the cells recorded in slice preparations
demonstrated relative reductions in sequential structure
(i.e., higher levels of randomness) and an absence of
nonlinearity.

Such data do not, of course, provide a definitive test of
the model. Dynamical analyses are not required for differ-
entiating in vitro and in vivo recordings of DA cells; this
can be accomplished by examining variability of ISI se-
quences alone. More definitive tests of the model will
require selective alterations of one or more major sources of
synaptic input to DA neurons recorded in vivo that do not
curtail ISI variability or other more standard aspects of cell

firing patterns (e.g., percent bursting) that could secondarily
affect nonlinear ISI structure. Our prediction is that certain
alterations, by virtue of perturbed coordination of synaptic
inputs, will eliminate or reduce nonlinear structure of DA
cell firing patterns while retaining many standard ISI char-
acteristics. Undertaking such studies will require systematic
alterations of different components of neural circuits pro-
viding inputs to DA cells.

Our findings indicate that future dynamical studies of ISI
patterns will need to consider the confounding effects of non-
stationarity and that methodologies should demonstrate a ca-
pacity to detect higher-dimensional and/or noise-contaminated
nonlinear structure. Keeping these caveats in mind, we antic-
ipate that nonlinear analysis will demonstrate that the moment-
to-moment behavior of many types of neuron is not stochastic
or random with some central tendency but instead has a
sequence-dependent deterministic structure derived from neu-
ral circuit interactions.

APPENDIX

Al: Autocorrelation
The autocorrelation function across different spans or lags of ISI events
was calculated as follows (Box and Jenkins, 1976; see also Chang et al.,
1994):

N-L

E (Xt- (x))(Xt+L -(X)
t=1

N-L

E (Xt - (X)
t=1

where L is the event lag, x, is the ith ISI, N is the total number of ISIs in
the data set, and (x) is the mean ISI. This calculation can be repeated for
any event lag of interest.

A2: Correlational complexity
Estimations of sequence-dependent structure required embedding our data
sets of M elements, {xt}, into a state space. This was accomplished by
mapping {xt} into a set of lag vectors {xt} whose elements were defined as

xt = (Xt, Xt+, Xt+2T9 ...* Xt+(n-1)T),

where n was the embedding dimension of the state space and T was the
embedding lag. A number of different methods for choosing an optimal
embedding lag have been proposed (Rapp et al., 1988; Fraser and Swinney
1986; Martinerie et al., 1992). We chose autocorrelation time as the
criterion (Rapp et al., 1988; Tsonis and Elsner, 1988). Autocorrelation time
is defined as the first event lag where the autocorrelation function is less
than lie. For all 15 ISI data sets, autocorrelation at one event interval was
less than lie. Therefore, T was set at one for all embeddings.

Correlational complexity was calculated on the basis of the correlation
function N(r, n) (Grassberger and Procaccia, 1983, p. 191):

N(r,n) = 5X2 Y, (r-llxi-xjll),
*.
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where r is a spacing variable, 0 is the Heaviside function (equaling 1 for
positive arguments and 0 for negative arguments), v is the total number of
lag vectors generated by {xi}, and 11 ... 11 is Euclidean distance in the
n-dimensional embedding space, where

lix - YlI
= ((xO - Yo)2 + (x1 - yJ2 + ... + (Xn-1 -Yn-1)2)1/2

For large data sets with "fractal" geometric scaling in the embedding space,
log (N(r, n)) grows linearly with respect to log r. By plotting log N(r, n)
against log r, a measure d can be calculated as the slope. This calculation
can be repeated multiple times with increasing embedding dimensions n. If
d stabilizes with increasing n, it estimates the dimensionality of the
dynamical system generating the data set in question.

As dimensionality increases, the number of data points that one requires
to estimate it increases exponentially (Eckmann and Ruelle, 1992). We
anticipated that the available size of ISI data sets for DA cells would be
insufficient to permit us to estimate directly their relatively high dimension.
Data sets larger than 3000-4000 ISIs run the risk of significant shifts in
state, which could change sequential structure. Consequently we developed
a complexity measure analogous to dimensionality calculated relative to
particular embedding dimensions but that required fewer data points. For
all data sets in our study, plots of log N(r, n) against log r were smoothly
sigmoidal with an approximately linear central region. An algorithm was
used to estimate the slope of the portion of correlation function curve
which was maximally linear. This slope estimation was designated the
correlational complexity.

A3: Nonlinear prediction

Nonlinear prediction was calculated as follows:
1. Let xq be an element of the set of lag vectors {xJ} generated from an

ISI or from surrogate data set {xt}, as described in Appendix A2.
2. Let {Yq} be a subset of {xJ} (t 0 q) consisting of the k lag vectors

nearest xq in terms of Euclidean distance.
3. A prediction of the future event, Xq+n, was calculated as the simple

average of projections over the k lag vectors:

pred(xq+n) = yYj+n,
j=1

where yj E {Yq} and Y +n is the next ISI occurring "beyond" the lag vector.
Predictions of ISI or surrogate events immediately following each lag

vector xq were calculated, q ranging from 1 to M-n. To assess the overall
predictive success of the algorithm applied across the ISI data set or
surrogate, a Spearman-rank correlation coefficient (re) was then calculated
between the M-n pairs of predictions and corresponding observed events;
this nonparametric method of assessing nonlinear prediction accuracy
accommodates nonnormal distributions of ISI data sets (many of which
were quite skewed; see again Table 2) and was previously used by
Sugihara and May (1990). All predictions were generated by using an
embedding dimension n set at 4 and 7; k, the number lag vectors used to
generated predictions, was set at 2% of the total number of lag vectors in
the data set. This same k setting was employed by Chang et al. (1994) and
Schiff et al. (1994). Finally, a mean nonlinear prediction score for each
embedding dimension was calculating by averaging the 15 values of r.
corresponding to the 15 ISI data sets.

A4: Gaussian-scaled surrogates
Gaussian-scaled surrogates were generated on the basis of a three-step
procedure:

1. Assume that {xi} is a time series. A Gaussian-distributed data set with
exactly the same number of elements with zero mean and a standard
deviation of 1 was created by using a random-number generator. This

random data set was then reordered to create {y1} so that its within-set
ranks exactly matched the within-set ranks of {xi}; in other words, for any
q, Yq E {y1} would have the same rank within its set as the corresponding
xq E {xi} within its set.

2. {y1} was then Fourier transformed into the frequency domain, and
a random phase was added to each term of the Fourier transform. These
"phase-randomized" Fourier transforms were then retransformed into
the time domain as {y'i}. Phase randomization destroys all nonlinear
structure (see Eqs. 2 and 3) while approximating linear correlative
structure (see Eq. 1).

3. A surrogate data set, {xi'} is created as a reshuffling of the original
data set {xi} such that the rank order of all elements belonging to {xi'}
matches that of corresponding elements in {y'i}. Any static, monotonic
nonlinearity (see Eq. 2) intrinsic to {xi} is thus recreated by {xi'}. Sequen-
tial data sets produced by this shuffling procedure are referred to as
Gaussian-scaled surrogates.
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