Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Dec;69(6):2350–2363. doi: 10.1016/S0006-3495(95)80104-9

Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems.

W L Erdahl 1, C J Chapman 1, R W Taylor 1, D R Pfeiffer 1
PMCID: PMC1236472  PMID: 8599641

Abstract

Phospholipid vesicles loaded with Quin-2 and 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) have been used to investigate the effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin. At an external pH of 7.0, a delta pH (inside basic) of 0.4-0.6 U decreases the rate of Ca2+ transport into the vesicles by severalfold under some conditions. The apparent extent of transport is also decreased. In contrast, raising the pH by 0.4-0.6 U in the absence of a delta pH increases both of these parameters, although by smaller factors. The relatively large effects of a delta pH on the transport properties of Ca2+ ionophores seem to reflect a partial equilibration of the transmembrane ionophore distribution with the H+ concentration gradient across the vesicle membrane. This unequal distribution of ionophore can cause a very slow or incomplete ionophore-dependent equilibration of delta pCa with delta pH. A second factor of less certain origin retards full equilibration of delta pCa when delta pH = 0. These findings call into question several ionophore-based methods that are used to investigate the regulatory activities of Ca2+ and other divalent cations in biological systems. Notable among these are the null-point titration method for determining the concentration of free cations within cells and the use of ionophores plus external cation buffers to calibrate intracellular cation indicators. The present findings also indicate that the transport mode of Ca2+ ionophores is more strictly electroneutral than was thought, based upon previous studies.

Full text

PDF
2350

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Balasubramanian S. V., Sikdar S. K., Easwaran K. R. Bilayers containing calcium ionophore A23187 form channels. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1038–1042. doi: 10.1016/0006-291x(92)92308-k. [DOI] [PubMed] [Google Scholar]
  3. Chapman C. J., Erdahl W. E., Taylor R. W., Pfeiffer D. R. Effects of solute concentration on the entrapment of solutes in phospholipid vesicles prepared by freeze-thaw extrusion. Chem Phys Lipids. 1991 Dec;60(2):201–208. doi: 10.1016/0009-3084(91)90042-a. [DOI] [PubMed] [Google Scholar]
  4. Chapman C. J., Erdahl W. L., Taylor R. W., Pfeiffer D. R. Factors affecting solute entrapment in phospholipid vesicles prepared by the freeze-thaw extrusion method: a possible general method for improving the efficiency of entrapment. Chem Phys Lipids. 1990 Aug;55(2):73–83. doi: 10.1016/0009-3084(90)90068-3. [DOI] [PubMed] [Google Scholar]
  5. Chapman C. J., Puri A. K., Taylor R. W., Pfeiffer D. R. Equilibria between ionophore A23187 and divalent cations: stability of 1:1 complexes in solutions of 80% methanol/water. Biochemistry. 1987 Aug 11;26(16):5009–5018. doi: 10.1021/bi00390a019. [DOI] [PubMed] [Google Scholar]
  6. Chapman C. J., Puri A. K., Taylor R. W., Pfeiffer D. R. General features in the stoichiometry and stability of ionophore A23187-cation complexes in homogeneous solution. Arch Biochem Biophys. 1990 Aug 15;281(1):44–57. doi: 10.1016/0003-9861(90)90411-q. [DOI] [PubMed] [Google Scholar]
  7. Erdahl W. L., Chapman C. J., Taylor R. W., Pfeiffer D. R. Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system. Biophys J. 1994 May;66(5):1678–1693. doi: 10.1016/S0006-3495(94)80959-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  9. Fasolato C., Pozzan T. Effect of membrane potential on divalent cation transport catalyzed by the "electroneutral" ionophores A23187 and ionomycin. J Biol Chem. 1989 Nov 25;264(33):19630–19636. [PubMed] [Google Scholar]
  10. Fry D. W., White J. C., Goldman I. D. Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978 Oct 15;90(2):809–815. doi: 10.1016/0003-2697(78)90172-0. [DOI] [PubMed] [Google Scholar]
  11. Kafka M. S., Holz R. W. Ionophores X537A and A23187. Effects on the permeability of lipid bimolecular membranes to dopamine and calcium. Biochim Biophys Acta. 1976 Feb 19;426(1):31–37. doi: 10.1016/0005-2736(76)90426-0. [DOI] [PubMed] [Google Scholar]
  12. Kamo N., Muratsugu M., Hongoh R., Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 1979 Aug;49(2):105–121. doi: 10.1007/BF01868720. [DOI] [PubMed] [Google Scholar]
  13. Kauffman R. F., Chapman C. J., Pfeiffer D. R. Location and dynamics of ionophore A23187 bound to unilamellar vesicles of dimyristoylphosphatidylcholine. Biochemistry. 1983 Aug 2;22(16):3985–3992. doi: 10.1021/bi00285a039. [DOI] [PubMed] [Google Scholar]
  14. Kauffman R. F., Taylor R. W., Pfeiffer D. R. Acid-base properties of ionophore A23187 in methanol-water solutions and bound to unilamellar vesicles of dimyristoylphosphatidylcholine. Biochemistry. 1982 May 11;21(10):2426–2435. doi: 10.1021/bi00539a023. [DOI] [PubMed] [Google Scholar]
  15. Kauffman R. F., Taylor R. W., Pfeiffer D. R. Cation transport and specificity of ionomycin. Comparison with ionophore A23187 in rat liver mitochondria. J Biol Chem. 1980 Apr 10;255(7):2735–2739. [PubMed] [Google Scholar]
  16. Mason M. J., Grinstein S. Ionomycin activates electrogenic Ca2+ influx in rat thymic lymphocytes. Biochem J. 1993 Nov 15;296(Pt 1):33–39. doi: 10.1042/bj2960033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  18. Moronne M. M., Cohen J. A. Electrical measurement of electroneutral fluxes of divalent cations through charged planar phospholipid membranes. Biochim Biophys Acta. 1982 Jun 28;688(3):793–797. doi: 10.1016/0005-2736(82)90293-0. [DOI] [PubMed] [Google Scholar]
  19. O'Shea P. S., Petrone G., Casey R. P., Azzi A. The current-voltage relationships of liposomes and mitochondria. Biochem J. 1984 May 1;219(3):719–726. doi: 10.1042/bj2190719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  21. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sankaram M. B., Shastri B. P., Easwaran K. R. Interaction of carrier ionophores with phospholipid vesicles. Biochemistry. 1987 Aug 11;26(16):4936–4941. doi: 10.1021/bi00390a008. [DOI] [PubMed] [Google Scholar]
  23. Smith G. L., Miller D. J. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985 May 8;839(3):287–299. doi: 10.1016/0304-4165(85)90011-x. [DOI] [PubMed] [Google Scholar]
  24. Stiles M. K., Craig M. E., Gunnell S. L., Pfeiffer D. R., Taylor R. W. The formation constants of ionomycin with divalent cations in 80% methanol/water. J Biol Chem. 1991 May 5;266(13):8336–8342. [PubMed] [Google Scholar]
  25. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  26. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  27. Vega C. A., Bates R. G. Buffers for the physiological pH range: thermodynamic constants of four substituted aminoethanesulfonic acids from 5 to 50 degrees C. Anal Chem. 1976 Aug;48(9):1293–1296. doi: 10.1021/ac50003a010. [DOI] [PubMed] [Google Scholar]
  28. Vestergaard-Bogind B., Stampe P. Trans to cis proton concentration gradients accelerate ionophore A23187-mediated net fluxes of Ca2+ across the human red cell membrane. Biochim Biophys Acta. 1984 Sep 5;775(3):328–340. doi: 10.1016/0005-2736(84)90188-3. [DOI] [PubMed] [Google Scholar]
  29. Wulf J., Pohl W. G. Calcium ion-flux across phosphatidylcholine membranes mediated by ionophore A23187. Biochim Biophys Acta. 1977 Mar 17;465(3):471–485. doi: 10.1016/0005-2736(77)90266-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES