Skip to main content
. 2025 Aug 6;12:1606159. doi: 10.3389/fcvm.2025.1606159

Table 3.

Performance benchmarking of our approach against leading techniques on ADNI and BraTS datasets.

Model ADNI dataset BraTS dataset
mAP Precision Recall F1 score mAP Precision Recall F1 score
Faster R-CNN (42) 81.32 ± 0.02 78.45 ± 0.03 79.88 ± 0.02 79.12 ± 0.03 80.76 ± 0.02 77.32 ± 0.02 79.24 ± 0.03 78.19 ± 0.02
YOLOv5 (44) 85.78 ± 0.03 82.34 ± 0.02 83.29 ± 0.02 82.76 ± 0.03 84.62 ± 0.02 81.08 ± 0.03 82.85 ± 0.02 81.96 ± 0.02
RetinaNet (43) 83.12 ± 0.02 80.67 ± 0.03 81.42 ± 0.02 80.91 ± 0.02 82.55 ± 0.02 79.33 ± 0.02 80.87 ± 0.03 80.22 ± 0.02
DETR (41) 86.59 ± 0.03 83.78 ± 0.02 85.14 ± 0.03 84.43 ± 0.02 85.23 ± 0.02 82.14 ± 0.03 83.79 ± 0.02 83.05 ± 0.02
CornerNet (45) 84.02 ± 0.02 81.23 ± 0.03 82.75 ± 0.02 81.94 ± 0.02 83.47 ± 0.02 80.02 ± 0.02 81.95 ± 0.03 81.14 ± 0.02
SSD (46) 82.11 ± 0.03 79.14 ± 0.02 80.68 ± 0.03 79.90 ± 0.02 80.88 ± 0.02 77.76 ± 0.02 79.84 ± 0.03 78.71 ± 0.02
Ours 90.23 ± 0.02 87.89 ± 0.02 89.45 ± 0.03 88.76 ± 0.02 88.94 ± 0.02 86.45 ± 0.02 87.92 ± 0.03 87.21 ± 0.02

The values in bold are the best values.