Table 2. Final enantiomeric ratio (er) = major enantiomer/minor enantiomer obtained from achiral initial conditions in model 1.
log(k2/k1)
|
|||||
---|---|---|---|---|---|
log{k0/(k1[A]0)} | 1 | 2 | 3 | 4 | 5 |
-2 | 1 | 1 | 1 | 1.41 | 1.01 |
-3 | 1 | 2 | 10 | 18 | 19 |
-4 | 1 | 2 | 24 | 96 | 164 |
-5 | 1 | 3 | 28 | 237 | 908 |
-6 | 1 | 2 | 29 | 285 | 740 |
Here, er has been used instead of ee to exemplify the effect of chiral amplification, er = (1 + ee)/(1 - ee).