Table 4.
ROC curves of multivariate logistic regression analysis, random forest, and support vector machine.
AUC | AUC_CI_Lower | AUC_CI_Upper | Best_Threshold | Youden | Sensitivity | Specificity | |
---|---|---|---|---|---|---|---|
Traditional Factor-logistic | 0.831 | 0.793 | 0.868 | 0.431 | 0.529 | 0.760 | 0.769 |
Traditional factor-RF | 0.730 | 0.655 | 0.805 | 1.500 | 0.460 | 0.633 | 0.827 |
Traditional factor-SVM | 0.732 | 0.671 | 0.820 | 1.500 | 0.492 | 0.721 | 0.770 |
Placental function-logistic | 0.733 | 0.687 | 0.779 | 0.484 | 0.364 | 0.684 | 0.680 |
Placental function-RF | 0.612 | 0.529 | 0.694 | 1.500 | 0.223 | 0.656 | 0.568 |
Placental function-SVM | 0.643 | 0.565 | 0.722 | 1.500 | 0.287 | 0.507 | 0.779 |
AUC = area under the curve, ROC = receiver operating characteristic, SVM = support vector machine.