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Abstract
Healthy older men manifest concomitant hypoandrogenemia and attenuation of LH pulse size.
Because exogenous GnRH remains effective, a plausible intuition is that aging reduces hypothalamic
GnRH secretion, thus mediating relative hypogonadotropic hypogonadism. To assess the impact of
age on central GnRH outflow indirectly, we quantitated graded suppression of pulsatile LH secretion
by saline and escalating doses of a potent and selective GnRH-receptor antagonist, ganirelix, in 18
healthy men ages 23–72 yr. The rationale is that ganirelix should reduce the amplitude of LH pulses
in proportion to both drug concentration and endogenous GnRH feedforward. To this end, blood was
sampled every 10 min for 2 h before and 16 h after sc administration of saline or ganirelix and for 3
additional hours after iv injection of a fixed dose of GnRH (100 ng/kg); concentrations of LH and
ganirelix were measured by immunochemiluminometry and RIA, respectively; and pulsatile LH
secretion was quantitated by a deconvolution procedure. Log-linear regression analysis was used to
estimate the sensitivity of pulsatile LH secretion to inhibition by a unit increase in serum ganirelix
concentrations in each subject. Statistical analyses revealed that increasing age markedly attenuated
the capability of ganirelix to decrease LH pulse size (viz., r = −0.648; P = 0.004). In contrast, age
did not modify the competitive interaction between injected GnRH and ganirelix. These joint
outcomes support the clinical hypothesis that age diminishes hypothalamic GnRH outflow without
impairing GnRH action in healthy men.

Abbreviations
CV, Coefficient(s) of variation; Te, testosterone

AGING IS MARKED by a 30–50% decline in systemic testosterone (Te) availability in healthy
community-dwelling men (1–5). Epidemiological studies have correlated hypoandrogenemia
with sarcopenia, osteopenia, diminished physical stamina, sexual dysfunction, visceral
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adiposity, reduced quality of life, depressive mood, and cognitive deficits (6–13). Te
supplementation ameliorates some of these signs and symptoms (14–17). Despite the high
prevalence of aging-associated hypoandrogenemia, the precise cause remains unknown (18).

Mechanistic studies indicate that both the calculated mass of LH secreted in bursts (and
therefore the incremental amplitude of LH pulses) and systemic Te availability are reduced
significantly in older men, thereby mimicking hypogonadotropic hypogonadism (19–25).
Smaller LH secretory bursts are not attributable to impaired gonadotrope responsiveness to
GnRH, inasmuch as injected GnRH stimulates LH release normally acutely and over 14 d in
healthy elderly individuals (26–28). An alternative clinical hypothesis is that aging decreases
hypothalamic GnRH secretion, thereby limiting feedforward drive to LH pulses. This
mechanistic consideration is significant, inasmuch as the amplitude of LH pulses correlates
with Te secretion in vitro and in vivo (28–33). In addition, iv infusion of discrete pulses of
biosynthetic LH can restore normal Te secretion in young men when pituitary LH output is
reduced experimentally by a potent GnRH-receptor blocker (34). Accordingly, understanding
the basis for attenuation of high-amplitude LH secretory bursts in the aging male is relevant
to elucidating possible central mechanisms that contribute to hypoandrogenemia.

Neuronal GnRH secretion cannot be measured directly in the human (18). To probe
hypothalamic GnRH outflow indirectly, the present study compares the capability of graded
doses (and thereby increasing serum concentrations) of a potent and specific GnRH-receptor
antagonist to suppress pulsatile LH secretion in healthy men ages 23–72 yr. The mechanistic
assumption is that selectively blocking central GnRH action will decrease pulsatile LH
secretion in proportion to opposing GnRH feedforward (35). This reasoning follows from the
physiological observations that: 1) GnRH is the primary agonist of burst-like LH release (36,
37); and 2) GnRH-receptor blockers acutely repress the pulsatile rather than basal component
of LH secretion (38,39).

Subjects and Methods
Clinical screening

Eighteen men, ages 23 to 72 yr (average age, 45 yr; two or three men in each decade), were
enrolled after providing voluntary written informed consent, as approved by the Mayo Clinic
Institutional Review Board. Participants were healthy community-dwelling men within 20%
of ideal body weight, who had not undertaken transmeridian travel within 10 d or consumed
alcohol, caffeine, or prescribed medications for 48 h or 5 half-lives. Detailed medical inventory
excluded a history of infertility, systemic disease, recent weight change (more than 2 kg change
in the preceding 6 wk), hormonal therapy, or psychoactive drug use. Medical history (including
libido and erectile function), physical examination (including testis size), and fasting morning
(0800 h) biochemical tests of renal, hepatic, hematological and metabolic function (fasting
plasma glucose, electrolytes, and thyroid function) were within normal limits for age. Subjects
were compensated for the time spent in the study according to an IRB-defined schedule.

Sampling protocol
Eligible volunteers were admitted to the General Clinical Research Center (GCRC) for four
separate randomly ordered, overnight inpatient studies scheduled at least 1 wk apart. Blood
samples (1.0 ml) were withdrawn every 10 min beginning at 1800 h for a total of 21 h through
forearm iv catheters. Samples were allowed to clot at room temperature, and sera were frozen
at −20C for later assay of LH, ganirelix, and Te concentrations.

Ganirelix is a potent, selective antagonist of GnRH action that binds competitively to the
cognate receptor (40). The plasma half-life of ganirelix is 15 ± 2 h (41), which coincides with
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its 20- to 28-h inhibitory effect in men after sc injection (34). Ganirelix doses of 0 (saline), 0.1,
0.3, or 1.0 mg/m2 were administered sc in double-blind fashion on separate days in randomly
assigned order at 2000 h (2 h after the beginning of blood sampling). A single submaximally
effective GnRH stimulus (100 ng/kg iv bolus) was given 16 h after ganirelix administration
(viz., 3 h before the end of blood sampling) to verify competitive inhibition in each subject.

Assays
Serum LH concentrations were measured in each 10-min sample in duplicate by automated
chemiluminescence assay (ACS 180, Bayer, Norwood, MA), using the First International
Reference Preparation as the standard. Intraassay coefficients of variation (CV) were 4.7, 3.5,
and 3.8%, and interassay CV were 8, 3.7, and 4.7% at LH concentrations of 4.4, 18, and 39
IU/liter, respectively. Procedural sensitivity was 0.2 IU/liter. All samples were measurable (3
or more SD values above LH-deficient serum). Total Te concentrations were assayed in serum
collected at the beginning of blood sampling (1800 h). Intra- and inter-assay CV were 6.8 and
8.3%, and assay sensitivity was 8 ng/dl (multiply by 0.0347 to convert to nanomoles per liter)
(21,42). Thus, 9,144 separate samples were assayed for LH and Te (total, 18,288).

Serum ganirelix concentrations were measured in duplicate by RIA using polyclonal rabbit
antisera (Anaspec Inc., San Jose, CA), as initially described by others (43). The antiserum does
not cross-react detectably with native GnRH at concentrations ranging from 30–1000 ng/ml.
Ganirelix was radioiodinated via the chloramine-T reaction. Incubations were conducted with
50 μl serum, 5000 dpm radiolabeled ganirelix, and an antibody dilution of 1:3000 in RIA buffer
[0.1 M phosphate buffer (pH 7.4), 0.8% NaCl, 0.5% BSA, 0.01% thimerosal, 0.01% Triton
X-100, 0.1 mM EDTA]. Bound and free ligand were separated by precipitation with goat
antirabbit antiserum. Mean intraassay CV were 8.9, 5.7, and 18.7%, and interassay CV were
8.2, 4.0, and 9.2% at 0.5, 1.0, and 10 ng/ml, respectively. Assay sensitivity was 0.05 ng/ml.
Ganirelix concentrations were determined in a 2-h serum pool collected just before GnRH
injection. A 2-h pool is valid, given the prolonged serum half-life of ganirelix in the human
(41).

Analytical procedures
According to classical concepts of a competitive single ligand-receptor interaction, the
magnitude of an observed biological response is determined 3-fold jointly by concentration(s)
of the agonist and any competing antagonist and properties of the receptor-response pathway
(35). These minimal assumptions are satisfied because: 1) the GnRH receptor-effector pathway
responds normally or in an enhanced fashion to single and repeated (14-d) pulses of GnRH in
older men (27,28); 2) GnRH is the exclusive or predominant physiological agonist of the
cognate human pituitary receptor (37); and 3) ganirelix acts strictly competitively in vitro and
in vivo (44). In the last regard, we have shown that iv injection of 100 ng/kg GnRH is
submaximally stimulatory (37) and inhibited competitively by ganirelix in men and women
(34,45,46).

The primary outcome of interest is pulsatile LH secretion (the summed mass of LH secreted
in bursts) over the last 8 h just before, and the 3 h immediately after, injection of GnRH in each
of the four interventions (saline and three doses of ganirelix). The foregoing time intervals
comprise inclusively 9–16 and 17–19 h after ganirelix administration, respectively, thereby
encompassing periods of sustained LH suppression and exogenous GnRH-induced LH release
(34,45,46).

Pulsatile LH secretion was estimated from each 21-h LH concentration time series by
deconvolution analysis (47). The methodology assumed Gaussian-approximated secretory
bursts and previously determined biexponential LH half-lives of 18 and 90 min, with 0.63 as
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the proportion of slow/total decay amplitude (48). The empirical estimates do not vary with
age, as corroborated analytically and by infusion of biosynthetic LH in young and older men
(23,24,46). The entire LH profile was analyzed, and then pulsatile secretion was segmented
into respective 8-h and 3-h intervals for further statistical analysis.

Statistical analysis
Inhibitory sensitivity was estimated in each volunteer by regressing the natural logarithm of
pulsatile LH secretion during the last 8 h before (or 3 h after) GnRH injection linearly on
measured serum ganirelix concentrations. The slope of the relationship in any given subject
provides an index of the sensitivity of pulsatile LH secretion to inhibition by increasing
concentrations of ganirelix independently of absolute baseline LH concentrations. To test the
hypothesis that age attenuates fractional inhibition by ganirelix, the 18 individual slope values
were regressed linearly on age. The a priori postulate was that age decreases ganirelix’s
inhibition of LH secretory-burst mass; i.e. the cohort slope on age is significantly negative
(49).

Two-way repeated-measures ANOVA was applied to assess the relationship between serum
ganirelix concentrations (dependent variable) and both ganirelix dose (four fixed factors) and
age (one random factor) (independent variables) (49). The variance-covariance matrix in the
generalized linear-model structure allowed for within-subject but not between-subject response
correlations by dose (50). Estimation of model parameters was by maximum likelihood (51).
Homogeneity of slopes was tested by an F ratio at P < 0.05. Post hoc comparisons among
means were made by Tukey’s test. Analyses were performed using SAS Proc Mixed (version
8.02; SAS Institute, Inc., Cary, NC). Power was defined as 1 minus the estimated type II error
expressed as a percentage (52).

Data are presented as the mean ± SEM (or ± SD for individual slopes).

Results
Baseline concentrations of LH and total Te averaged over the 18-h interval before GnRH
injection on the saline (zero-dose ganirelix) day were 3.4 ± 0.41 (range, 1.5–7.4) IU/liter and
460 ± 46 (range, 183–780) ng/dl (multiply by 0.0347 to convert to nanomoles per liter),
respectively. Mean values did not differ by age, as reported previously in other healthy cohorts
(28,53,54). Calculated free and bioavailable Te concentrations declined linearly with age (both
P < 0.01) (55). Serum ganirelix concentrations after doses of 0, 0.1, 0.3, and 1.0 mg/m2

increased logarithmically (P < 0.001) (Fig. 1). Based on repeated-measures two-way ANOVA,
age did not significantly alter dose-dependent increases in ganirelix concentrations.

Figure 2 depicts LH concentrations sampled every 10 min for 21 h stratified in relation to the
four randomly ordered interventions in one 34-yr-old subject. By visual inspection, ganirelix
suppressed peak LH concentrations dose-dependently. Repeated-measures one-way ANOVA
revealed that absolute maximal (5-point moving average) LH concentrations over the 21 h
decreased with increasing ganirelix dose(0, 0.1, 0.3, and 1.0 mg/m2), as follows: 10.3 ± 1.3,
6.7 ± 0.96, 5.7 ± 0.86, and 3.9 ± 0.62 IU/liter (P < 0.001). Post hoc comparisons revealed that
responses differed significantly among any pair of saline and the lowest and highest inhibitor
doses. Absolute nadir (5-point moving average) LH concentrations were 2.2 ± 0.31, 0.81 ±
1.12, 0.81 ± 0.21, and 0.55 ± 0.09 IU/liter and occurred 583 ± 85, 737 ± 50, 712 ± 60, and 820
± 42 min after ganirelix administration. ANOVA disclosed that compared with saline the three
doses of ganirelix enforced equivalent decreases in, and time delays to, nadir LH concentrations
(each P < 0.01). Thus, nonzero ganirelix doses determine peak LH concentrations, but not nadir
values or the time latency to reach the nadir.
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Deconvolution analysis was used to quantitate pulsatile (putatively GnRH-dependent) LH
secretion before (8 h) and after (3 h) GnRH injection (Fig. 3). Ganirelix reduced pulsatile LH
secretion dose-dependently during endogenous GnRH drive (Fig. 3A) and after exogenous
GnRH stimulation (Fig. 3B) (both P < 0.001). The highest ganirelix dose (1.0 mg/m2) was
significantly more inhibitory than the lower two ganirelix doses, and all three doses were
significantly inhibitory compared with saline (each P ≤ 0.007).

Figure 4 illustrates log-linear regression of pulsatile LH secretion (dependent variable) on
ganirelix concentrations (independent variable) in nine individual subjects whose ages (shown)
spanned the six decades studied. The absolute value of the slope of each regression is a measure
of inhibitory sensitivity in that particular subject; viz., the fractional degree to which pulsatile
LH secretion is reduced by a unit increase in the serum ganirelix concentration.

Figure 5 relates inhibitory sensitivity of pulsatile LH secretion (dependent variable) to age
(independent variable) in the cohort of 18 men. Statistical analysis rejected the null hypothesis
of a zero slope at P = 0.004 (r = −0.648). The estimated absolute slope (± SD) of the regression
was 0.010 ± 0.003.

Figure 6 relates comparably estimated inhibitory sensitivity of GnRH-stimulated pulsatile LH
secretion to age. Statistical analysis revealed that age does not alter ganirelix’s concentration-
dependent inhibition of a constant GnRH stimulus. Statistical estimates predicted a power of
at least 95% for detecting ≥ 30% contribution by age to the variance in slope at P < 0.05 when
n = 18. Thus, the effect of age is not on GnRH action but on GnRH availability.

Discussion
The present investigation in 18 normal men supports the postulate that age reduces
hypothalamic outflow of GnRH to the pituitary gland, thereby resulting in low-amplitude LH
pulses in the face of reduced Te availability. In particular, assuming that a burst of GnRH drives
a pulse of LH (36,37), impaired suppression of pulsatile LH secretion by escalating
concentrations of a competitive GnRH-receptor antagonist would predict diminished GnRH
availability and/or enhanced gonadotrope sensitivity to GnRH (35). The present data argue
against the latter conjecture, inasmuch as age did not influence competitive inhibition of a fixed
exogenous GnRH stimulus. In principle, attenuation of GnRH feedforward in aging men could
reflect a smaller amount and/or an altered waveform of neuronal GnRH delivery to gonadotrope
cells (24,25,56).

The accompanying investigative paradigm comprised graded suppression of endogenous and
exogenous GnRH-driven LH secretory bursts by a logarithmic range of doses of a potent
GnRH-receptor antagonist. Another GnRH blocker was used at a single dose earlier in a clinical
study of the relative GnRH dependence of the preovulatory LH surge (57). The current
paradigm adopts an analogous strategy in aging men but differs experimentally by way of: 1)
evaluating GnRH-receptor blockade over a 10-fold range of antagonist doses in each subject;
2) measuring serum ganirelix concentrations, and thereby relating LH secretion to
simultaneous concentrations of the inhibitor in each subject; 3) quantitating pulsatile LH
secretion as the endpoint of GnRH-receptor antagonism, given that pulsatile but not basal LH
secretion reflects GnRH drive acutely (36–38); and 4) employing a fixed exogenous GnRH
stimulus to assess whether the GnRH-ganirelix-receptor interaction changes with age (35).
Under this extended set of study conditions, older age predicts diminished feedforward drive
of pulsatile LH secretion by endogenous, but not by exogenous, GnRH.

Basic laboratory studies point to decreased GnRH outflow in the aged male rat (18). For
example, GnRH release by mediobasal hypothalamic fragments and castration-induced LH
secretion are impaired; direct pituitary effects of GnRH are preserved; and LH pulse amplitude
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falls in the older rodent (58–64). Incremental LH pulse amplitude (or LH secretory-burst mass)
also declines in older men despite retention of gonadotrope responsiveness to exogenous GnRH
acutely and over a 2-wk interval of pulsatile iv infusions (20,27,28). In fact, the size of LH
secretory bursts is approximately 50% lower in elderly than young men studied in each of the
gonadally intact, low-Te, and low-estrogen milieus (24,25,65). The generality of diminished
burst-like LH secretion in these contexts is consistent with the accompanying evidence for
attenuated GnRH outflow.

Whether heightened sex-steroid negative feedback contributes to reduced hypothalamic GnRH
drive in the older male is not known. In this regard, exogenous androgens reportedly are either
more or less inhibitory and endogenous androgens are less inhibitory in older than young
volunteers (24,25,32,66). Other investigations establish that injections of human chorionic
gonadotropin or recombinant human LH fail to elevate total or bioavailable Te concentrations
maximally in aging subjects (46,67,68). According to biomathematical models of the
hypothalamo-pituitary-gonadal axis, tripartite diminution of GnRH feedforward, androgenic
negative feedback, and Leydig-cell steroidogenesis are necessary and sufficient to explicate
the ensemble features of low-amplitude LH pulses, more irregular patterns of LH release, and
hypoandrogenemia in the elderly male (24,25,53,54). Thus, diminished GnRH drive in the
older male may be part of a larger array of regulatory deficits.

The clinical implications of reduced hypothalamic GnRH drive to pulsatile LH secretion in
older individuals are 2-fold. First, a proximate inference is that aging modifies one or more
central neuronal pathways that direct pulsatile GnRH secretion. Candidate neurochemical
signals would include glutamine, γ-aminobutyric acid, norepinephrine, neuropeptide Y, and
the cocaine amphetamine-regulated transcript (69–71). And, secondly, a physiological issue
is whether decreased GnRH secretion represents an adaptive process in aging. The query arises
because experimental withdrawal of LH during young-adult life in the male rat significantly
enhances testis responsiveness to the same gonadotropin in older age (72).

The validity of the accompanying inferences is supported by several considerations: 1) serum
ganirelix concentrations varied in proportion to inhibitor dose but not age; 2) the GnRH
antagonist suppressed both (deconvolved) LH secretory-burst mass and (model-free) LH peak
height dose-dependently; 3) the within-subject dose-response design permitted regression of
inhibitory responses on a 10-fold range of ganirelix concentrations; and 4) injection of a fixed
GnRH stimulus corroborated competitive and age-invariant inhibition of exogenous GnRH
action. By way of qualification, although age alone accounted for more than 60% of the
variance in the sensitivity of pulsatile LH secretion to inhibition by ganirelix, longitudinal
investigations in healthy aging volunteers would be required to define the precise age-
dependence of decreased GnRH outflow.

In summary, increasing age markedly blunts the capability of graded blockade of the GnRH
receptor to reduce endogenously stimulated LH pulses in healthy men. In contrast, age does
not affect the relationship between ganirelix dose and serum ganirelix concentrations or
exogenous GnRH action. These collective outcomes support the hypothesis that aging
attenuates GnRH outflow to gonadotrope cells, thereby contributing to relative
hypogonadotropic hypogonadism in older men.
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Fig. 1.
Relationship between serum ganirelix concentrations and logarithmically increasing doses of
ganirelix in 18 normal men. The overall P value was estimated by repeated-measures ANOVA.
Post hoc comparisons were made by the Tukey procedure. Means with different (unshared)
alphabetic superscripts differ by P < 0.05. Data are the mean ± SEM (n = 18).
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Fig. 2.
Ganirelix dose-response study illustrated in a 34-yr-old man. Each set of LH concentrations
includes a 2-h baseline (0–120 min), 16 h of monitoring after saline or ganirelix injection
(open arrow, at 130 min), and 3 additional hours of sampling after fixed iv GnRH bolus (bold
arrow, at 1080 min). Data reflect 10-min sampling beginning at 1800 h.
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Fig. 3.
Ganirelix suppresses pulsatile LH secretion (A) and exogenous GnRH-stimulated LH release
(B) dose-dependently. Unshared (unique) alphabetic superscripts identify significantly
different means by the post hoc Tukey test. Data are the mean ± SEM in 18 healthy men ages 23–
72 yr.
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Fig. 4.
Illustration of log-linear relationship between pulsatile LH secretion (IU per liter per 8 h) and
serum ganirelix concentrations (nanograms per milliliter) in nine men of the indicated ages
(numbers in boxes) among the 18 subjects studied. The slope of an individual regression line
(bold face number) provides an estimate of inhibitory sensitivity to ganirelix in that subject
(viz., fractional suppression of pulsatile LH secretion per unit increase in ganirelix
concentration; see Subjects and Methods). All 18 slope values are given in Fig. 5.
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Fig. 5.
Linear regression of inhibitory sensitivity of pulsatile LH secretion on age in 18 men. Each
point represents the slope (± SD) of the relationship between the logarithm of pulsatile LH
secretion and the ganirelix concentration (slopes are illustrated in Fig. 4).
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Fig. 6.
Lack of relationship between inhibitory sensitivity of exogenous GnRH-stimulated LH release
(dependent variable) and age (independent variable) in 18 healthy men. The format of data
presentation is that of Fig. 5.
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