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A new way to parametrize certain aspects of tropical convection
through stochastic and mesoscopic models is developed here. The
technical idea is to adapt tools from statistical physics and mate-
rials science to model important unresolved features of tropical
convection. This new strategy consists of modeling the unresolved
effects of convective inhibition in a coarse mesh mesoscopic
parametrization through a ‘‘heat bath’’ model involving a stochas-
tic spin flip model with very natural interaction rules for convective
inhibition combined with a suitable external potential defined by
the coarse mesh values. In turn, the values of the order parameter
from this heat bath alter the vertical mass flux in regions of deep
convection. Both stochastic and systematic deterministic meso-
scopic parametrizations are developed here. The deterministic
mesoscopic models derived in this fashion exhibit new phenomena
such as multiple radiative equilibria in suitable parameter regimes.
The simplest first numerical experiments reported here with the
mesoscopic deterministic parametrization qualitatively reproduce
several key features of the observational record regarding con-
vectively coupled tropical waves. The systematic stochastic mod-
eling strategy proposed here could also be very useful for captur-
ing other features of tropical convection such as those involving
cloud radiation feedbacks.

Convection in the tropics has a profound impact on short-term
climate. Tropical convection is roughly organized into two

types of cloud structures. The first type is ubiquitous and involves
shallow cumulus convection over heights of roughly 1 km above
the surface, and the second type involves deep penetrative
convection to heights of 5–10 km with associated anvil towers of
clouds. Observational data indicate that tropical deep convec-
tion is organized on a hierarchy of scales ranging from hundreds
of kilometers due to mesoscale organized squall lines to intrasea-
sonal oscillations over planetary scales of order 40,000 km (1–3).
The present practical models for prediction of both weather and
climate involve general circulation models (GCM) where the
physical equations for these extremely complex flows are dis-
cretized in space and time and the effects of unresolved processes
are parametrized according to various recipes (4, 5). With the
current generation of supercomputers, the smallest possible
mesh spacings are roughly 50–100 km for short-term tropical
weather simulations and of 200–300 km for short-term climate
simulations. With such coarse mesh spacing, despite much
progress in the parametrization of tropical convection, the
current generation of GCMs (4, 5) still fails to reproduce most
of the significant features of the observational record (1–3)
regarding tropical convection (4, 5). Thus, given the importance
of the tropics for short-term climate, new strategies for param-
etrizing the unresolved effects of tropical convection are very
important.

The main topic of this paper is to introduce a different
approach for parametrizing certain features of tropical convec-
tion. The climate mean vertical profile over the western Pacific
warm pool gives a large convectively available potential energy
(CAPE) highly favorable for deep convection, yet paradoxically
the area fractions where such deep convection occurs are
extremely small, on the order of 1% or less (4, 5). One of the
reasons for this much smaller area fraction is the fact that in the

climatological mean state, there is usually a small negative
potential energy for vertical motion over the boundary layer
roughly 1 km in vertical extent and this leads to convective
inhibition (CIN).

Here, a new stochastic modeling strategy is introduced for
parametrizing the unresolved effect of the CIN in the boundary
layer on the dynamics of deep tropical convection on coarse
discrete spatial meshes. The main idea is to consciously mimic
ideas from nonequilibrium statistical mechanics with firm math-
ematical underpinnings that have been developed recently for
applications in materials science involving adsorption processes
of molecules from surfaces (6–11). Such an approach is used
here to develop both microscopic stochastic models and meso-
scopic mean field models for tropical convection. The plan of the
remainder of the paper is as follows. First, the stochastic models
are developed and then these models are coarse-grained to
mesoscopic scales to yield a new convective parametrization for
CIN. In the remainder of the paper, the implications and new
phenomena in this parametrization strategy are developed
briefly for a model tropical convective parametrization that
mimics other important features of a basic parametrization
strategy for GCMs.

The Stochastic Model for CIN
In a typical GCM, the fluid dynamical and thermodynamical
variables, denoted here by the generic vector u� , are regarded as
known only over a discrete horizontal mesh with u� j � u�(j�x, t)
denoting these discrete values. Throughout the discussion in this
paper, one horizontal spatial dimension along the equator in the
east–west direction is assumed for simplicity in notation and
explanation. As mentioned above, the typical mesh spacing in a
GCM is coarse with �x ranging from 50 km to 250 km depending
on the time duration of the simulation. However, observation-
ally, CIN is known to have significant fluctuations on a hori-
zontal spatial scale on the order of 1 km, the microscopic scale
here, with changes in CIN attributed to different mechanisms in
the turbulent boundary layer such as gust fronts, gravity waves,
and turbulent fluctuations in equivalent potential temperature
(12). Here the view is adopted that all of these different
microscopic physical mechanisms and their interactions which
increase and decrease CIN are too complex to model in detail in
a coarse mesh GCM parametrization and instead, as in statistical
mechanics (6–11), they will be modeled by a simple order
parameter, �I, taking only two discrete values,

�I � 1 at a site if convection is inhibited (a CIN site)

�I � 0 at a site if there is potential for deep convection

(a PAC site). [1]

As depicted in Fig. 1, the value of CIN at a given coarse mesh
point is determined by the averaging of CIN over the microscopic
states in the vicinity of the given mesh point, i.e.,

Abbreviations: CIN, convective inhibition; GCM, general circulation models; CAPE, convec-
tively available potential energy; PAC, potential for deep convection; RCE, radiative
convective equilibrium.
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�I�x, t� �
1

�x�
�j � 1/2��x

�j � 1/2��x

�I�x, t�dx. [2]

Note that the mesh size, �x, is mesoscopic, i.e., between the
microscale, O(1 km), and the macroscale, O(10,000 km), and that
�I can have any value in the range 0 � �I � 1. Here in 2 and
elsewhere in the paper, discrete sums over microscopic mesh
values (of order 1 km) and continuous integrals are used
interchangeably for notational convenience. How should micro-
scopic CIN sites interact? The observation of the turbulent
fluctuation of CIN (12) suggests the following plausible inter-
action rules which are adopted here:

A) If a CIN site is surrounded by mostly CIN sites,
it should remain a CIN site with high probability.

B) If a PAC site is surrounded by CIN sites,
it should have a high probability to switch to a CIN site.

C) The external large scale mesoscopic values, u� j,
should supply an external potential h�u� j� that
modifies the dynamics in A and B according to whether
external conditions favor CIN or PAC
(potential for deep convection). [3]

To satisfy the requirements in 3, the microscopic energy
content in the boundary layer for CIN is assumed to be given by

Hh��I� � �
x � y

J�x, y��I�x��I�y� � h � �I�x�, [4]

where J(x, y) is a nonnegative interaction potential, J � 0
satisfying

J�x, y� � �J���x � y��

J0 � � J�x�dx [5]

with � a parameter defining the range of microscopic interaction.
Note that for external potentials h1, h2

h1 � h2 implies Hh1
	 Hh2

and in particular, for h � 0, Hh � H0.

Thus, a more negative external potential, h1 � h2,

always reduces the energy for CIN, Hh1
,

below the value Hh2
for any configuration, �I(x). [6]

In the approach presented here, the boundary layer states
measuring CIN are regarded as a ‘‘heat bath’’ coupled to the
mesoscopic fluid variables u� j via the external potential h(u� j) so
that the equilibrium statistics of CIN in the boundary layer are
given through the Gibbs measure (13)

G � �Z���1exp��
Hh���	d�, [7]

where Z� is a normalizing constant for the probability measure
and the ‘‘inverse temperature 
’’ is chosen to determine the
average mean energy for CIN. Next, the approach in refs. 8 and
11 is followed: a microscopic stochastic time-dependent dynam-
ics is defined which allows for flipping back and forth locally
between sites with CIN and PAC with probabilities reflecting the
intuitive rules in A and B from 3. A local spin flip takes a
configuration, �I(x), at some random discrete site, x, and flips it
to a new configuration

�I
x�y� � �1 � �I�x� when y � x

�I�x� when y � x. [8]

Assume that such a spin flip occurs at a rate c(x, �I)�t for �t ��
1 given by the Arrhenius adsorption�desorption model (8, 11),

c�x, �I� � ��I
� 1exp��
V�x�	, �I � 1

�I
� 1, �I � 0 with V�x�

[9]

� �
z � x

J�x � z��I � h�x�.

Here �I is a characteristic time of interaction. According to the
rate in 9, if a CIN site is mostly surrounded by CIN sites, it needs
to overcome a larger energy barrier statistically to become a
PAC site; however, no such extra energy barrier exists to convert
a PAC site to a CIN site. In mathematical terms, these stochastic
dynamical models are continuous Markov jump models (14)
which keep the Gibbs measure in 7 invariant under the dynamics.
In physical terms, the energy barrier in 9 corresponds to the local
CIN energy that needs to be overcome to convert a CIN site into
a PAC site which favors deep convection and corresponds to the
intuitive reasoning in ref. 12 with a different quantitative mod-
eling perspective.

Convective mass f lux parametrizations for deep convection
are among the most common ways to parametrize deep
tropical convection in GCMs (4, 5). Theoretical efforts in
understanding parametrization of deep tropical convection
have focused on parametrizations that mimic those in the
vastly more complex GCMs in simpler models with crude
vertical resolution (see refs. 15 and 16, and the references
therein). Here the stochastic and mesoscopic models for CIN
are presented in the context of the simplified models from ref.
16, which are prototype mass parametrizations to illustrate
both the stochastic model and to analyze its implications
brief ly in a simplified context.

A Stochastic Model for Parametrizing Convection with CIN
Here the prototype mass flux parametrization with crude ver-
tical resolution developed in section 2 of ref. 16 is used to
illustrate the fashion in which the stochastic model for CIN
developed in 2–9 above can be coupled to a nonstochastic
convection mass flux parametrization. For simplicity in exposi-
tion, the parameters �2, b in ref. 16 are set identically to zero so
that explicit coupling to the second baroclinic mode is ignored.
Under these circumstances with a single horizontal x-variable,
the prognostic variables u� � (u, 
, 
eb, q2) are the x-component
of the fluid velocity, u, the potential temperature in the middle
troposphere, 
, the equivalent potential temperature, 
eb, mea-
suring the potential temperature plus moisture content of the
boundary layer, and q2, the stratiform heating rate for the second
baroclinic mode. The dynamic equations for these variables in
the parametrization (16) are given by

Fig. 1. CIN at a given coarse mesh point determined by the averaging over
the microscopic states in the vicinity of the given mesh point.
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with D�Dt � ���t 
 u���x, while the constants QR
0 , 
*eb are

externally imposed and represent the radiative cooling in the
upper troposphere and saturation equivalent moist potential
temperature in the boundary layer. The crucial quantities in the
prototype mass flux parametrization are the terms q1 and D,
where q1 represents the middle troposphere heating due to deep
convection and D represents the downward mass flux on the
boundary layer. The heating term q1 is given by

q1 � M�c��CAPE� � �1/2 [11]

with M a fixed constant and

�c � the area fraction for deep convection. [12]

The quantity �c controls the vertical mass flux from the deep
convection. The downward mass flux on the boundary layer, D,
is a sum of three contributions including the environmental
downdrafts, me, and both the deep convective and stratiform
mass fluxes, mc, ms, so that

D � me � m�, [13]

where the downward mass flux due to convection m� is given by

m� �
1 � �

�
m
, � precipitation efficiency

m
 � �1 � ��mc � �ms, � constant

mc � �c��CAPE� � �1/2, ms � M�1q2 [14]

and that due to the environment, me, by

me � �1 � �c��we�
�

�1 � �c�we � ��mc � Hmux�. [15]

See ref. 16 for extended discussion. In 11, 14, and 15, the notation
(X)� denotes, respectively, the positive or negative part of the
number X. For the discussion in this paper, the values of the
remaining constants in 10–15 are given in table 1 of ref. 16 and
are not repeated here unless noted below. The equations in
10–15 define the prototype convective mass flux parametrization
used here. It is established in refs. 12 and 16 that this parame-
trization reproduces key features of convectively coupled trop-
ical waves on scales of order 1,500 km in the observational record
(3) that are not captured in other prototype parametrizations of
tropical convection.

The equations in 10–15 are regarded as the prototype GCM
parametrization when discretized in a standard fashion using
central differences on a coarse mesh �x with �x ranging from 50
km to 250 km. How is the stochastic CIN model defined in 2–9
coupled to this basic parametrization? First, the area fraction for
deep convection, �c, governing the upward mass flux strength,
is allowed to vary on the coarse mesh and is given by

�c � �c
� � �I��c

� � �c
� � and �I is given by the average in 2,

[16]

where �c
� � �c


 are threshold constant values. When the order
parameter �I signifies strong CIN locally so that �I � 1, the flux

Fig. 2. Multiple equilibria. Here we plot the zero level set of the function
F(�) � F(�, �) in 23 for different fixed values of �*. The intersection of each
curve with the straight line defined by a fixed normalized interaction
strength, �, defines the number of equilibria.

Fig. 3. Nonlinear wave train after 100 days for �I � 72 h and initial RCE with
�c � 0.002. Solid, solution at t � 100 days; dashed, time average during days
100 	 t 	 200; dotted, initial RCE.
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of deep convection is diminished to the fraction �c
� while with

PAC locally this f lux increases to the value �c

.

To complete the coupling of the stochastic CIN model into the
parametrization, the coarse mesh external potential, h(u� j), from
3 and 4 needs to be specified from the coarse mesh values, u� j.
There is no unique choice of the external potential but its form
can be dictated by simple physical reasoning. Here, the plausible
physical assumptions are made that

when 
eb rises, the energy for CIN decreases;

when the stratiform mass flux increases,

the energy for CIN decreases. [17]

With the properties in 6, the conditions in 17 are satisfied with
the choice

h�j�x, t� � ���̃
eb � �1 � �̃�ms	 [18]

and the constant value �̃ � 0.75 is used below. The stratiform
mass flux is used in h here because it is known observationally
that the stratiform wake of tropical squall lines often precondi-
tions the CIN to allow for additional deep convection through
gust fronts and gravity waves (12). There are other plausible

choices for the external potential that will be compared and
contrasted elsewhere by the authors. The equations in 8–16 and
18 complete the description of the stochastic model for param-
etrizing convection with CIN.

The Mesoscopic Deterministic Parametrization with CIN
The stochastic parametrization model derived above converges
to a completely deterministic parametrization with CIN pro-
vided that the interaction potential for the boundary layer, J,
from 5 has sufficiently long-range interaction so that � �
O(�x) is sufficiently large compared to the microscale. Under
these circumstances it is known with full mathematical rigor
in somewhat simpler circumstances (6, 8, 9, 11) that the
mesoscale averages, �I(j�x, t), solve the integro-differential
equation,

��I�j�x, t�
�t

� �I
� 1�1 � �I�1 � exp��
h � 
J � �I��	, [19]

with the external potential, h, given from 18 and 
J � �I the
discrete average given by

Fig. 4. Vertical-zonal physical picture of the flow associated with the wave train in Fig. 3. Dark contours correspond to positive anomalies and light contours
correspond to negative anomalies.

1126 � www.pnas.org�cgi�doi�10.1073�pnas.032663199 Majda and Khouider



�
J � �I��j�x� � 
J0�a�I�j�x� �
1 � a

2
�I��j � 1��x�

�
1 � a

2
�I��j � 1��x�� [20]

with some constant value of a, 0 � a � 1. Recall the constant
J0 from 5. In this limiting regime of the stochastic model, the
equations in 10–16 together with 18–20 describe a completely
deterministic prototype mass flux parametrization of convection
with CIN that retains some features of the physical basis of the
underlying stochastic model. The remainder of the paper briefly
describes some of the new features of this parametrization.

Regimes with Multiple Radiative Convective Equilibria (RCE)
RCE are simple basic states that are homogeneous in x where
radiative cooling through QR

0 in 10 exactly balances the warming
of the boundary layer driven by 
*eb and define the simplest
climatological mean state for theory (4, 5, 15, 16).

Next it is shown below that multiple regimes for RCE can exist
in the convective parametrization with CIN defined by 10–16
and 18–20. It is interesting that there is recent evidence for the
existence of multiple RCE in cloud resolving numerical simu-
lations with interactive radiation (17).

The mass flux parameter is given by

mc � �c��CAPE� � �1/2 [21]

with �c determined from �I through 16. Following ref. 16, the
RCE is given through the mass flux parameter m� c via

��

Hm
m� c �

1
1 � s

QR
0 � 0

C
�
*eb � 
� eb� � m� c

1
�

�
� eb � 
� em�

m� s � m� c. [22]

Given the external parameters QR
0 , 
*eb, 
� em, the equations in 22

imply that

m� c, 
� eb, m� s

are determined as functions of the external parameters

QR
0 , 
*eb, 
� em.

Following ref. 11, the steady states �� I at RCE are determined
through the mass flux, m� s, and 
� eb by the equation

F��� I� � 0

F��� � ��1 � �� � �e���

with
� � exp (�
��̃
�eb � �1 � �̃�m� s	 )

� � 
J0 �normalized strength of interaction�. [23]

According to ref. 11, the equation

F��� I� � 0

has either a unique solution or three roots as solutions depending
on the values of � and �; obviously, only a single root occurs for
� � 0 given explicitly by

�* �
1

1 � �
, for � � exp (�
��̃
�eb � �1 � �̃�m� s	 ),

for � � 0. [24]

Below, �* is used as a parameter to illustrate various values of
J0 and 
 where the multiple RCE can occur.

In Fig. 2, the zero level set of this function is plotted for
different values of the parameter �*. The intersection of each
curve with the straight line defined by a fixed normalized
interaction strength, �, defines the number of equilibria for that
strength of interaction. Clearly, either one or three multiple
RCE equilibria exist depending on the parameter values.

Numerical Experiments with the Mesoscopic
CIN Parametrization
Here the results of some simple preliminary numerical experi-
ments that illustrate several facets of the parametrization are

Fig. 5. Pattern of CIN depicting a situation of a mixed behavior of propagating waves that carry CIN and quasi-steady convectively coupled large spikes and
plateaus of CIN. �I � 12 h.
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described briefly. In the numerical experiments reported below,
the large scale domain is 4,000 km and �x � 80 km. Perturbation
of the standard RCE from refs. 15 and 16 will be used to
demonstrate the additional role of the CIN parametrization. A
critical parameter in the behavior that we find in the parame-
trization is �I, the convective inhibition time, in 19.

In the first experiment, the larger value �I � 72 h is used with
mean state given by an RCE with �c � 0.002. Without the
dynamic CIN parametrization, this RCE is unstable to linear
theory (16). This RCE is perturbed by a small amplitude
unstable wave train according to linear theory and the simulation
is run until a new statistical mean state is developed; this takes
about 100 days. As shown in Fig. 3, this new mean state has less
mean CIN with a 75% larger area fraction, �c � 0.0035. The
structure of the solution over days 100 � t � 200 consists of a
nonlinear wave train with four parametrized supercloud clusters
of scale roughly 1,000 km propagating as a wave group with
eastward speed (to the right) of 13 m�s. These are the param-
etrizations in the model of the super-cluster convectively coupled
tropical waves in the observational record (3, 18). The key
structural feature to note in these waves as depicted in Figs. 3 and
4 are that the depletion of CIN leads the increase in CAPE which
in turn leads the strong vertical updraft region and the region of
heating. These are all key features in the observational record of
such waves (3, 18). Another way to study tropical convection is
through detailed numerical cloud resolving modeling using bulk
microphysics and roughly 1 km resolution in two dimensions
(17). In figures 13 and 14 of ref. 17, a supercluster wave train
moving eastward at 18 m�s was produced through post-
processing the numerical output of a cloud resolving modeling
simulation. The qualitative resemblance between Figs. 3 and 4 of
the present paper and figures 13 and 14 of ref. 17 is striking and
gives further evidence supporting two different approaches to
understanding tropical convection and its parametrization.

To test the behavior of the mesoscopic CIN parametrization
in parameter regimes with multiple equilibria, the mean initial
data for the domain was divided into two regions with one RCE
with less CIN occupying 0 � x � 2,000 km and an other RCE
with the largest CIN occupying 2,000 � x � 4,000 km with
random perturbations added suitably. In these experiments, the
threshold values, �c


 � 0.01 and �c
� � 0.001 were used in 15, the

values �c

, �c

� correspond to unstable and stable RCE, respec-

tively, without the effects of CIN (16). The results of the
parametrizations depend on �I in an interesting fashion. For �I �
72 h, the results are similar to those discussed in the first case
where the changes in CIN move with the wave. At the other
extreme, a small value of �I � 3 h results in a steady pattern of
large spikes and plateaus of CIN with propagating waves that do
not carry changes in CIN. In the intermediate regime �I � 12 h,
the very interesting situation emerges with competition of both
effects with propagating waves which carry CIN like those in
Figs. 3 and 4 and also quasi-steady convectively coupled large
spikes and plateaus of CIN. The pattern of CIN depicting this
mixed behavior for several days of the statistical equilibrium is
depicted in Fig. 5. Notice from Fig. 5 that the strength of the
propagating waves decreases as the waves sweep through the
standing spikes and plateaus of larger CIN.

Concluding Discussion
In this paper, a new way to parametrize features of tropical
convection through stochastic and mesoscopic models has been
proposed. The main approach was to use and adapt ideas from
statistical physics that have been successful in other contexts
from materials science. New features for tropical convection
emerge such as the possibility of multiple RCE; the new meso-
scopic parametrizations exhibit several novel features of pattern
formation that agree qualitatively with both key aspects of the
observational record (3, 18) and recent results from cloud
resolving numerical modeling (17). Despite these encouraging
first results, many further tests of the approach are needed. The
sensitivity of this mesoscopic parametrization to key parameters
such as �I and the external potential, h(u� j), are central issues and
will be explored in the future. Other interesting future research
directions include the direct simulation of the full stochastic
model for parametrization developed here as well as the possi-
bility of deriving coarse grained stochastic corrections to the
mesoscopic model in a systematic fashion.

The ideas for this approach for tropical convection were stimulated by
a very clear lecture by Markos Katsoulakis at an Institute of Pure and
Applied Mathematics workshop on materials science at the University of
California, Los Angeles, in May 2001. A.M. is partially supported by
grants NSF-DMS-9972865, ONR-N00014-96-1-0043, and ARO-
DAADI9-01-10810, and B.K. is funded as a post-doc through these
grants.
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