Table 2.
Average precision, AUC, and maximal cohen’s kappa percentiles at different iterations with two sampling/adaptation alternatives. The random sampling approach outperforms the sequential sampling one on all three metrics on each listed iteration.
| Average precision (percentile) |
AUC (percentile) |
Maximal Cohen’s kappa (percentile) |
||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Sampling approach | Iteration | 50% | 25% | 75% | 50% | 25% | 75% | 50% | 25% | 75% |
| No Fine Tuning | 0 | 0.855 | 0.715 | 0.913 | 0.965 | 0.948 | 0.971 | 0.742 | 0.646 | 0.796 |
| Random sampling | 5 | 0.906 | 0.820 | 0.948 | 0.973 | 0.960 | 0.981 | 0.798 | 0.753 | 0.873 |
| 10 | 0.930 | 0.875 | 0.969 | 0.984 | 0.975 | 0.991 | 0.838 | 0.798 | 0.898 | |
| 20 | 0.962 | 0.931 | 0.981 | 0.989 | 0.984 | 0.993 | 0.888 | 0.865 | 0.925 | |
| Sequential sampling | 5 | 0.400 | 0.280 | 0.720 | 0.788 | 0.638 | 0.890 | 0.380 | 0.236 | 0.561 |
| 10 | 0.575 | 0.408 | 0.782 | 0.835 | 0.731 | 0.908 | 0.482 | 0.251 | 0.637 | |
| 20 | 0.640 | 0.408 | 0.801 | 0.862 | 0.771 | 0.930 | 0.548 | 0.354 | 0.678 | |