Skip to main content
. 2025 Jul 11;15(16):8012–8030. doi: 10.7150/thno.112781

Table 2.

Advantages and limitations of hypoxia imaging modalities.

Techniques Labels Signal measured Advantages Limitations Cost Throughput Resolution References
PET Radiotracers Positrons from radionuclides High sensitivity and specificity Radioactive Limited spatial resolution Low SNR High Low 5‒7 mm 33-48
BOLD-MRI Label-free Magnetic field alterations Noninvasive
Label-free High spatial resolution
Low sensitivity and specificity
Susceptible to physiological factors
Time-consuming scans
High Low 1‒2 mm 50-54
OE-MRI Label-free Magnetic field alterations Noninvasive
Label-free High spatial resolution
Low sensitivity Limited specificity
Time-consuming scans
High Low 1‒2 mm 54-59
DCE-MRI Gadolinium-based contrast agents Vascular perfusion/permeability High spatial resolution Low sensitivity and specificity Time-consuming scans Require multiparametric analysis High Low 1‒2 mm 60-62
FMI Fluorescent probes Light No radiation
Low cost Live monitoring
High sensitivity
Invasiveness,
Limited tissue penetration
Low High 2‒3 mm 16-19,24,25,27-32,63,64,71,106
PLI Oxygen-sensitive luminescent probes Light No radiation,
Direct oxygen levels quantification
Invasiveness
Probe safety Complex imaging system Limited tissue penetration
Low High 3‒5 mm 13-15,72-74
PAI Label-free or Probes Sound Noninvasive High spatial-temporal resolutions Deep tissue penetration Probe safety Low High 1 mm 26,67,75-82
CLI Label-free or Oxyphros probes Cherenkov photons Live monitoring
High sensitivity
Radioactive
Limited tissue penetration
Low High 3‒5 mm 83-87

PET: positron emission tomography; BOLD-MRI: blood oxygen level-dependent magnetic resonance imaging; OE-MRI: oxygen-enhanced magnetic resonance imaging; DCE-MRI: dynamic contrast enhancement magnetic resonance imaging; FMI: fluorescent molecular imaging; PLI: phosphorescence lifetime imaging; PAI: photoacoustic imaging; CLI: Cherenkov luminescence imaging.