Table 2.
Performance comparison of 2D and 3D SAM approaches in terms of Dice score.
| Dim | Method | AMOS [13] | TotalSegmentator [28] | BraTS [20] | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1pt | 3pt | 5pt | 10pt | 1pt | 3pt | 5pt | 10pt | 1pt | 3pt | 5pt | 10pt | ||
| 2D | SAM [16] | 0.049 | 0.093 | 0.114 | 0.145 | 0.202 | 0.279 | 0.311 | 0.348 | 0.108 | 0.192 | 0.217 | 0.237 |
| MobileSAM [32] | 0.041 | 0.056 | 0.063 | 0.070 | 0.149 | 0.170 | 0.182 | 0.212 | 0.079 | 0.132 | 0.156 | 0.186 | |
| TinySAM [24] | 0.049 | 0.077 | 0.089 | 0.101 | 0.171 | 0.225 | 0.243 | 0.262 | 0.103 | 0.165 | 0.187 | 0.211 | |
| MedSAM [18] | 0.004 | 0.051 | 0.060 | 0.074 | 0.006 | 0.069 | 0.090 | 0.111 | 0.008 | 0.059 | 0.064 | 0.071 | |
| SAM-Med2D [4] | 0.097 | 0.127 | 0.129 | 0.132 | 0.008 | 0.081 | 0.100 | 0.128 | 0.013 | 0.076 | 0.082 | 0.084 | |
| 3D | SAM-Med3D [27] | 0.289 | 0.386 | 0.418 | 0.448 | 0.252 | 0.400 | 0.463 | 0.522 | 0.328 | 0.395 | 0.418 | 0.446 |
| FastSAM3D | 0.273 | 0.368 | 0.402 | 0.437 | 0.250 | 0.378 | 0.445 | 0.519 | 0.333 | 0.401 | 0.421 | 0.445 | |
We measure the performance at 1, 3, 5, and 10 point prompts (pt). SAM-Med3D and our FastSAM3D are evaluated in a 3D context, whereas SAM, MobileSAM, TinySAM, MedSAM and SAM-Med2D are applied independently to all 2D slices of the entire 3D volume. Notably, FastSAM3D demonstrates competitive performance with SAM-Med3D and shows enhanced Dice scores relative to all its 2D counterparts, highlighting the effectiveness of our approach. The best performance is shown in red and boldface, while the second best is in blue.