Skip to main content
. 2025 Aug 12;8:1640549. doi: 10.3389/frai.2025.1640549

Table 2.

Layer-wise summary of the backbone CNN architecture with output shapes, specifications, and parameter count.

Layer type Output shape Details/specifications
*Two sub-columns indicate two parallel processes which will be subjected to an add () before the next process
Total number of parameters
Input 224,224,3 Input image 0
Conv2D_Block_1 111,111,32 3×3 Conv2D, 32, Stride = 1, activation = relu
2×2 MaxPool, Stride = 1
896
Identity_Block_1 111,111,64 1×1 Conv2D, 32, Stride = 1, activation = relu
+ BatchNorm ()
3×3 Conv2D, 32, Stride = 1, activation = relu
+ BatchNorm ()
1×1 Conv2D, 64, Stride = 1, activation = None
+ BatchNorm ()
1×1 Conv2D, 64, Stride = 1, activation = None
+ BatchNorm ()
15,876
Add ()
Activation (relu)
Conv2D_Block_2 55,55,64 3×3 Conv2D, 64, Stride = 1, activation = relu
2×2 MaxPool, Stride = 1
ZeroPadding (1,0), (1,0)
36,928
Concatenate 55,55,96 Concatenate (Conv2D_Block_2, MaxPool (Conv2D_Block_1)) 0
Identity_Block_2 55,55,128 1×1 Conv2D, 64, Stride = 1, activation = relu
+ BatchNorm ()
3×3 Conv2D, 64, Stride = 1, activation = relu
+ BatchNorm ()
1×1 Conv2D, 128, Stride = 1, activation = None
+ BatchNorm ()
1×1 Conv2D, 128, Stride = 1, activation = None
+ BatchNorm ()
67,592
Add ()
Activation (relu)
Batch Normalization 512
Conv2D_Block_3 27,27,128 3×3 Conv2D, 128, Stride = 1, activation = relu
2×2 MaxPool, Stride = 1
ZeroPadding (1,0), (1,0)
1,47,584
Concatenate 27,27,224 Concatenate (Conv2D_Block_3, MaxPool (Conv2D_Block_2)) 0
Identity_Block_3 27,27,256 1×1 Conv2D, 128, Stride = 1, activation = relu
+ BatchNorm ()
3×3 Conv2D, 128, Stride = 1, activation = relu
+ BatchNorm ()
1×1 Conv2D, 256, Stride = 1, activation = None+BatchNorm ()
1×1 Conv2D, 256, Stride = 1, activation = None
+ BatchNorm ()
2,78,544
Add ()
Activation (relu)
Conv2D_Block_4 13,13,256 3×3 Conv2D, 256, Stride = 1, activation = relu
2×2 MaxPool, Stride = 1
ZeroPadding (1,0), (1,0)
5,90,080
Concatenate 13,13,480 Concatenate (Conv2D_Block_4, MaxPool (Conv2D_Block_3)) 0
Identity_Block_4 13,13,512 1×1 Conv2D, 256, Stride = 1, activation = relu
+ BatchNorm ()
3×3 Conv2D, 256, Stride = 1, activation = relu
+ BatchNorm ()
1×1 Conv2D, 512, Stride = 1, activation = None
+ BatchNorm ()
1×1 Conv2D, 512, Stride = 1, activation = None
+ BatchNorm ()
11,30,528
Add ()
Activation (relu)
GlobalAveragePooling2D 0
Dense (1024), activation = relu 5,25,312
Dense (512), activation = relu 5,24,800
Batch normalization 2,048
Dropout (0.2) 0
Dense (38), activation = SoftMax 19,494