Skip to main content
. 2025 Aug 26;9:300. doi: 10.1038/s41698-025-01095-1

Table 3.

Summary estimate of pooled performance of artificial intelligence in image-based lung cancer diagnosis

Subgroup No. of studies (datasets) Tau2 Sensitivity Specificity P valueb
Sensitivity P valuea I2 (95%CI) Specificity P valuea I2 (95%CI)
Overall 209 (251) 0.0063 0.86 (0.84–0.87) < 0.05 94.71 (94.30–95.12) 0.86 (0.84–0.87) < 0.05 97.35 (97.19–97.51)
Objective 0.0001
Malignant/benign 128 (151) 0.0058 0.88 (0.86–0.90) < 0.05 96.53 (96.23–96.84) 0.88 (0.85–0.90) < 0.05 98.37 (98.26–98.48)
ADC/SCC 19 (22) 0.0243 0.81 (0.76–0.85) < 0.05 77.03 (67.73–86.33) 0.80 (0.74–0.84) < 0.05 76.20 (66.47–85.93)
Invasive/pre-invasive 16 (23) 0.0256 0.86 (0.82–0.89) < 0.05 62.91 (46.28–79.55) 0.82 (0.79–0.84) < 0.05 40.33 (10.58–70.08)
EGFR mutant/wild 46 (55) 0.0291 0.78 (0.75–0.81) < 0.05 73.50 (66.50–80.51) 0.81 (0.77–0.84) < 0.05 85.49 (82.25–88.73)
Cohort 0.0231
Internal validation cohort (195) 0.0113 0.86 (0.85–0.88) < 0.05 93.93 (93.38–94.48) 0.86 (0.84–0.88) < 0.05 96.54 (96.28–96.80)
External validation cohort (56) 0.0622 0.82 (0.78–0.86) < 0.05 96.35 (95.81–96.88) 0.84 (0.79–0.88) < 0.05 98.61 (98.47–98.76)
Algorithm 0.0630
Machine learning 114 (136) 0.0616 0.84 (0.82–0.86) < 0.05 88.58 (87.07–90.08) 0.83 (0.81–0.86) < 0.05 96.35 (96.01–96.69)
Deep learning 95 (115) 0.0054 0.87 (0.85–0.89) < 0.05 96.98 (96.69–97.27) 0.87 (0.85–0.89) < 0.05 97.41 (97.18–97.65)
3D deep learning 19 (22) 0.0845 0.87 (0.82–0.90) < 0.05 97.26 (96.68–97.85) 0.89 (0.85–0.92) < 0.05 96.31 (95.43–97.18)
2D deep learning 76 (93) 0.0018 0.87 (0.85–0.90) < 0.05 96.70 (96.34–97.06) 0.87 (0.84–0.89) < 0.05 97.71 (97.48–97.93)
Imaging variable only 0.7667
Yes 133 (155) 0.0079 0.87 (0.85–0.88) < 0.05 96.07 (95.65–96.48) 0.87 (0.84–0.89) < 0.05 98.36 (98.25–98.47)
No 76 (96) 0.0315 0.83 (0.81–0.85) < 0.05 84.28 (81.57–86.99) 0.83 (0.80–0.85) < 0.05 85.52 (83.08–87.96)
Nodule segmentation 0.7535
Manual 78 (94) 0.0331 0.84 (0.82–0.86) < 0.05 85.31 (82.80–87.82) 0.82 (0.80–0.85) < 0.05 89.91 (88.36–91.46)
Algorithm 131 (157) 0.008 0.86 (0.84–0.88) < 0.05 96.32 (96.00–96.64) 0.87 (0.84–0.89) < 0.05 98.22 (98.09–98.34)
Image quality control 0.1355
Yes 63 (72) 0.019 1.00 (0.99–1.00) < 0.05 95.14 (94.46–95.83) 0.85 (0.82–0.88) < 0.05 97.93 (97.71–98.15)
No 145 (179) 0.01 0.86 (0.84–0.88) < 0.05 94.97 (94.52–95.43) 0.86 (0.83–0.87) < 0.05 96.54 (96.27–96.82)

aP-Value for heterogeneity within each subgroup.

bP-Value for heterogeneity between subgroups with multivariable meta-regression analysis.