Table 7.
EV treatment paper.
| Author/Year | Model/Disease | EV source | Transfer parameters | Clinical & biological evidences | Mitochondrial mechanisms modulation |
|---|---|---|---|---|---|
|
| |||||
| Gai 2024 [55] | C57BL/6J Mice IRI Stroke |
MSC cells Mice Allogenic |
Dose: 100 μg of EV proteins Administration: intra-nasal |
↓ hypoxia-ischemia-induced injury ↓ neuronal damage ↓ infarct size (≈40 % reduction HI-EV vs. HI, ≈20 % reduction H2S-EV vs HI-EV) |
↑ anti-ox (Nrf2, PARK7, PRDX1, PRDX2)
↑ mito quantity (mtDNA) ↑ fusion (mfn1 and mfn2 mRNA) |
| Wu 2023 [56] | Balb/c Mice IRI stroke |
Hypoxic neurons cells Mice Allogenic |
Dose: 108 EV Administration: stereotactic microinjection Sites: cortex or nasal drops |
↓ cerebral infarction volume (≈45 % vs. vehicle) ↑ neuronal neurite survival ↑ neuronal integrity ↑ neuroprotection |
↓ mitochondria-associated apoptosis |
| Ikeda 2021 [57] | C57BL/6 Mice IRI cardiac | Induced cardiomyocyte cells Human Xenogeneic | Dose: 108 EV Administration: Injection Site: peri-infarct region | ↑ ejection fraction (≈20 % vs. vehicle) ↑ restoration of intracellular bioenergetics and contractile property ↑ post-MI cardiac function improvement |
↑ mito biogenesis (PGC-1α) |
| Lu 2021 [58] | C57BL/6 Mice IRI liver |
UC-MSC cells Human Xenogeneic |
Dose: 109 EV Administration: IV Site: tail |
↓ liver IRI ↑ hepato-protection & ↓ liver damage ↓ NETs formation |
↑ fusion (Mfn1) ↓ oxidative stress (mtROS) |
| Zhao 2021 [59] | C57BL/6 Mouse IRI renal |
MSC cells Human and mouse Allogenic/Xenogeneic |
Dose: 2*107 EV Administration: IV Site: tail |
↓ kidney inflammation ↓ renal lesion formation |
↑ OXPHOS ↓ mtDNA and mitochondrial damage ↑ mito biogenesis (restoring TFAM protein and stabilizing the TFAM-mtDNA complex) |
| Yao 2019 [60] | Sprague-Dawley rats IRI liver |
UC-MSC cells Human Xenogeneic |
Dose: 10 mg/kg EV Administration: IV Site: tail |
↑ hepatoprotection ↓ liver damage ↓ mRNA levels of IL-1β, IL-6, TNF-α, C-C motif ligand 12, IFN-κ, and TLR4 |
↑anti-ox (MnSOD) ↓ respiratory burst ↓ ROS (CellRox Deep Red, mitosox) |
| Bao 2022 [108] | C57BL/6J Mice Sepsis associated coagulopathy |
Primary neutrophils cells Mice Allogenic |
Dose: 2*105 EV Administration: IV Site: tail |
↓ mortality 40 % with EV treatment vs ↓ mortality 20 % with vehicle treatment at 70 h ↑ neutrophil-mediated prevention of DIC ↑ antithrombotic function of neutrophils ↓ endothelial dysfunction ↓ DIC severity |
↑anti-ox (SOD2) mediated endothelial protection ↓ endothelial ROS accumulation |
| Zheng 2021 [109] | Sprague-Dawley Rat Sepsis |
MSC cells Rat Allogeneic |
Dose: 2*107 EV Administration: IV Site: tail |
↓ mortality (from 56 % to 25 %) ↓ intestinal barrier dysfunction |
↑ fusion (mfn2) ↑ mito biogenesis (PGC-1α) |
| Yao 2024 [117] | C57BL/6J Mice Wound healing |
ADSCs cells Human Xenogeneic |
Dose: 3*108 EV Administration: hydrogel MNP Site: skin |
↓ wound healing time (≈5 day less vs. vehicle) ↑ macrophage polarization (M2 subtype) |
↑ MMP ↑ ATP levels ↓ ROS (Cell Rox probe) |
| Zhuang 2024 [118] | C57BL/6 Mice Aging |
Metformin treated MSC cells Human Xenogeneic |
Dose: 1010 EV Administration: hydrogel wound beds Site: skin |
↑ aged skin repair ↓ cellular senescence |
↑ ATP production ↑ OXPHOS ↑ mitophagy (LC3 II) |
| Chen 2024 [119] | C57BL/6 Mice Aging |
Plasma Mice Allogenic |
Dose 36 μg of EV proteins Administration: IV Site: not specified |
↓ age-associated functional decline
↓ senescence ↑ tissue regeneration ↑ lifespan |
↑ mito biogenesis (PGC-1α) |
| Liang 2024 [140] | Sprague-Dawley Mice Erectile disfunction |
PC-12 cells Rat Xenogeneic |
Dose: 108 MVs Administration: IC Site: Corpus cavernosum |
↑ erectile function
↓ ferroptosis ↓ apoptosis |
↓ oxidative stress marker (MDA) |
| Shen 2024 [141] | C57BL/6 Mice Autoimmune Hepatitis |
MSC cells Human Xenogeneic |
Dose: 3*1010 MVs Administration: IP |
↓ liver injury & ↑ liver protection ↑ glycolysis inhibition ↓ CD4+ T-cell activation ↓ mRNA IFN-γ, TNF-α, and IL-2 |
↓ OXPHOS |
| Tolomeo 2024 [142] | Pig Graft quality transplant for IRI |
MSC cells Pig Allogenic |
Dose: 1011 MVs Administration: into the solution of heart perfusion machine |
↑ myocardial viability ↓ apoptosis ↓ IL-1ra, IL-2 and IL-6 |
↓ anti-ox (SOD, CAT, GPX) ↓ oxidative stress (carbonylated proteins) ↓ mitochondrial cristae loss ↓ mitochondrial swelling |
| Cao 2022 [143] | BALB/c Mice Solid tumors |
Dendritic cells Mice Allogenic |
Dose: 80 μg EV proteins Administration: IV Site: tail |
↓ tumor size (≈80 % reduction vs. vehicle) ↑ T cell activation ↑ immunogenic cell death in tumor cells ↑ immune responses against primary, distant tumors and metastases tumors ↑ efficient eradication of primary, distant and metastases tumors ↓ cancer stem cells |
Not investigated |
| Lu 2022 [144] | C57BL/6 Mice Cardiac hypertrophy |
Hypoxic MSC cells Human Xenogeneic |
Dose: 109 EV Administration: IV Site: tail |
↑ hepatoprotective effects ↓ NETs formation (suppressed by hUC-MSC-EV) ↓ liver IRI severity |
↓ mitochondrial ROS (mitosox) ↑ mitochondrial fusion in neutrophils (Mfn2) ↓ cytokine release from neutrophils (IFN-γ, IL-6 and TNF-α) |
| Li 2022 [145] | C57BL/6 Mice Liver Fibrosis |
Plasma Mice Allogenic |
Dose: 4*108 EV Administration: IV Site: tail |
↓ liver fibrosis progression ↑ collagen synthesis and degradation regulation ↓ HSC activation |
↑ anti-ox (GSH levels) ↓ ROS (CMXROS) |
| Dutra Silva 2021 [146] | C57BL/6 Mice ARDS |
BM-MSC cells Human Xenogeneic |
Dose: 98.3 μg of EV proteins Administration: IV Site: tail |
↑ barrier integrity ↑ barrier integrity with ARDS plasma ↓ LPS-induced inflammation |
↑ in vivo mitochondrial respiration (OCR) |
| Morrison 2017 [147] | C57BL/6 Mouse ARDS |
MDMs cells Human Xenogeneic |
Dose: not specified Administration: intra-nasal |
↑ expression of the M2 phenotype marker CD206 ↑ phagocytic capacity of macrophages ↑ protection in lung injury ↓ production of cytokines (TNF-α and IL-8) |
↓ OXPHOS |
ADSCS: adipose derived stem cells, anti-ox: anti-oxidant, ARDS: acute respiratory distress syndrome, BM-MSC: bone marrow MSC, CAT: catalase, DIC: disseminated intravascular coagulation, EV: extracellular vesicles, GPX: glutathione peroxidase, GSH: reduced glutathione, HI: hypoxia-ischemia, HypEV: EV release by cells under hypoxia, IC: intracavernous, IFN: interferon, IL: interleukin, IP: intraperitoneal, IRI: ischemia-reperfusion injury, IV: intravenous, LC3: microtubule-associated protein light chain 3, MDA: malondialdehyde, MDMs: monocyte derived macrophages, Mfn: mitofusin, mito: mithcondria, M2 phenotype: alternatively activated macrophages, MMP: mitochondrial membrane potential, MNP: microneedle patch, MSC: mesenchymal stromal cells, MV: microvesicles, NRF2: nuclear factor erythroid 2-related factor 2, OCR: oxygen consumption rate, OXPHOS: oxidative phosphorylation, PGC1-α: Pparg coactivator 1-alpha, PRDX: peroxiredoxin, ROS: reactive oxygen species, SOD: superoxide dismutase, TFAM: mitochondrial transcription factor A, TNFα: tumor necrosis factor alpha, UC-MSC: umbilical cord MSC, ↑: increase/ improve, ↓: decrease, ≈: data have been estimated from the graphs.