Skip to main content
. 2025 Jul 30;12(8):827. doi: 10.3390/bioengineering12080827
Algorithm 3 FADEL Ensemble Learning-based Prediction
Input: Test sample x; trained base models {Hm}m=14; Random Forest meta-model RF with T trees
Output: Final prediction y^(x)
  • 1. 

     Initialize probability vector v of length 4

  • 2. 

    For m=1 to 4:

  • 3. 

         Compute raw score: smHm(x)

  • 4. 

             Compute probability: pmσ(sm)=11+exp(sm)

  • 5. 

         v[m]pm

  • 6. 

     Initialize predictions array {y^t}t=1T

  • 7. 

    For t=1 to T:

  • 8. 

         Identify leaf region Rt,j containing v

  • 9. 

             Retrieve probability vector: qt,j

  • 10.

            Compute prediction: y^t(x)=argmaxcYqt,j(y=c)

  • 11.

         y^t[t]y^t()

  • 12.

       Aggregate final prediction by majority voting: y^()=modey^1(),y^2(),,y^T()

  • 13.

       return  y^(x)