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The genetic relationship between 197 vancomycin-resistant Enterococcus faecium (VREF) isolates and 21
vancomycin-susceptible E. faecium isolates from Norwegian poultry was analyzed by amplified fragment length
polymorphism (AFLP). The isolates were compared to 255 VREF isolates from various sources and countries.
The Norwegian isolates constituted a relatively homogeneous population of E. faecium and clustered in a
previously defined poultry AFLP genogroup.

Vancomycin-resistant enterococci (VRE) have been of in-
creasing concern during the last 15 years as a cause of noso-
comial infections, particularly in the United States (16). In the
middle of the 1990s, an agricultural reservoir of the VanA type
of VRE associated with the use of avoparcin as a feed additive
in livestock and poultry was documented in Europe (1, 3, 13,
14). To understand the epidemiology of VRE, the genetic
relationship between isolates derived from human sources and
isolates derived from animal sources has been investigated in
several studies. Fingerprinting analyses have generally shown
that the population of VRE outside hospitals is heterogeneous,
although indistinguishable or closely related isolates from hu-
mans and animals have been described (9, 17, 18, 19). VRE
isolated during hospital outbreaks and from clinical specimens
have revealed a more homogeneous population, and both in-
terhospital clonal dissemination of VRE and intrahospital
clonal dissemination of VRE have been reported (7, 10).
Pulse-field gel electrophoresis (PFGE) has been regarded as
the “gold standard” for VRE typing in hospital epidemics (15),
but this typing method may be too discriminatory to describe
the genetic relatedness of epidemiologically unrelated VRE
(21). A novel fingerprinting method, amplified fragment length
polymorphism (AFLP) analysis, has recently been applied to
enterococci and has been suggested as a new gold standard for
fingerprinting enterococci from nosocomial outbreaks and in
epidemiological studies (2, 21).

In Norway, VanA-type VRE have been shown to persist in
poultry production and to be present on broiler farms 4 years
after avoparcin was banned (4, 5, 6). The aim of the present
work was to study the genetic relationship between vancomy-
cin-resistant Enterococcus faecium (VREF) and vancomycin-
susceptible E. faecium (VSEF) isolates recovered from Nor-

wegian poultry production between 1995 and 1999 by using
AFLP and to compare these isolates with VREF isolates from
both animal and human sources from other countries.

A selection of 197 VREF isolates (MICs of vancomycin,
�256 �g/ml; vanA gene present) recovered from various poul-
try sources (4, 5, 6, 14) from 1995 to 1999, as well as 21 VSEF
isolates (MICs of vancomycin, 0.38 to 1.0 �g/ml) recovered
from poultry carcasses in 1998 (unpublished data), were stud-
ied (Table 1). Most isolates originated from different poultry
flocks; the exceptions were nine carcass samples which each
gave rise to one VREF isolate and one VSEF isolate. The
VREF and VSEF isolates were in general susceptible to other
antimicrobial agents, although some showed reduced suscep-
tibility to tetracycline and/or erythromycin (4, 5, 6; unpublished
data).

AFLP analysis was performed as described by Willems et al.
(21). GeneScan software (Applied Biosystems) was used for
collection of the data, which subsequently were exported into
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TABLE 1. Numbers of VREF and VSEF isolates recovered from
various poultry sources in Norway at different times and

analyzed by the AFLP method

Source of isolates
No. of isolates

Reference(s)
1995 1998 1999 Total

Broiler or turkey feces 15 20 14 49 4, 5, 14
Broiler or turkey carcass

VREF 15 20 0 35 6, 14
VSEF 0 21 0 21 Unpublished data
Total 15 41 0 56

Broiler farm environment 5
Farm 1 0 0 46 46
Farm 2 0 0 45 45
Farm 3 0 0 11 11
Farm 4 0 0 3 3
Farm 5 0 0 8 8
Total 0 0 113 113

Total 30 61 127 218
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BioNumerics (version 1.5; Applied Maths, St. Martens-Latem,
Belgium) for further analysis. The AFLP profiles of the 218
Norwegian isolates were compared to each other, as well as to
the AFLP profiles of 255 VREF isolates from poultry, pigs,
veal calves, dogs, cats, hospitalized patients, and nonhospital-
ized persons from other countries (21). The effects of time
period, source, and vancomycin susceptibility on clustering of
AFLP patterns in the dendrogram were determined by using
group statistics (K-means partitioning) and the Jack-knife
method (available in the BioNumerics software) based upon
maximal similarities between the isolates (BioNumerics Man-
ual, version 1.5; Applied Maths). This method determined the
internal stability of the following predefined groups: time pe-
riod (1995, 1998, and 1999), source (feces, carcasses, and en-
vironment), vancomycin susceptibility (resistant and suscepti-
ble), and farm (farms 1 to 3 and 5).

AFLP typing of the 218 Norwegian E. faecium isolates re-
vealed a homogeneous population that shared at least 75% of
the restriction fragments. However, all but three isolates orig-
inated from a restricted area, the southeastern part of Norway,
and the majority originated from only five broiler farms, which
may have contributed to the genetic homogeneity observed.
Grouping of isolates that shared �80% of the restriction frag-
ments revealed seven AFLP groups (groups I to VII) (Fig. 1).
The results of the grouping analysis suggested that clustering
according to time of isolation occurred. Group separation sta-
tistics confirmed that specific clustering of isolates in time also
occurred when the sources of isolation during the different
time periods were taken into account (Table 2).

The majority of carcass and fecal isolates clustered in a
restricted number of AFLP groups (Fig. 1). Group separation
statistics showed a weak association between AFLP patterns
and isolates of carcass or fecal origin for 1998, while for 1995
no separation between the carcass and feces groups was found.
This supports the assumption that poultry carcass isolates of-
ten are of fecal origin. Of the 21 VSEF isolates from poultry
carcasses, 62% clustered in AFLP group V, while only two
(10%) of the VREF isolates recovered from poultry carcasses
in the same period of time (1998) clustered in this genogroup
(Fig. 1). Group separation statistics confirmed this genotypic
difference between the VREF and VSEF isolates included in
the analysis (Table 2).

For farms 1, 2, and 3, AFLP typing revealed an association
between genotype and farm of origin (Table 2), which suggests
the presence of a farm-adapted E. faecium population. This is
in concordance with results from Italy and Denmark showing
clonal spread of VRE within a poultry flock or a pig herd at the
same farm obtained by the use of PFGE (11, 12). The absence
of an association between AFLP profiles and farm of origin for
farms 4 and 5 is most probably due to the low number of

FIG. 1. Dendrogram of 218 E. faecium isolates recovered from
various Norwegian poultry sources at different times. The levels of
similarity were determined by using the Pearson product-moment cor-
relation coefficient. Seven AFLP groups (groups I to VI) were formed
at the �80% similarity level. The distributions of the isolates according
to time and source of isolation, as well as vancomycin susceptibility, are
shown.
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isolates included. The homogeneity of the Norwegian AFLP
profiles indicates that the VREF isolates recovered from farms
in the absence of poultry are genetically related to VREF
isolates recovered from poultry feces and carcasses. Conse-
quently, these results support the hypothesis that recycling of
VRE in the broiler farm environment is the most likely expla-
nation for the continuing high prevalence of VRE seen in
Norwegian poultry production (5).

When the AFLP profiles of the Norwegian isolates were
compared to the AFLP profiles of 255 VREF isolates from
other sources and countries (21), all the Norwegian isolates
clustered in the previously defined poultry genogroup, geno-
group B (Fig. 2). The finding that the Norwegian isolates
clustered with poultry-associated isolates from The Nether-
lands and not with porcine or veal calf-associated isolates from
The Netherlands strengthens the suggestion that clustering of
poultry isolates is not a result of geographical isolation but is a
result of adaptation of VREF to specific hosts (21). Most of the
isolates of human origin in poultry genogroup B originated
from humans with a history of poultry exposure. Carriage of
VRE in healthy poultry slaughterers and farmers has previ-
ously been described (4, 14, 19), and transmission of VREF is
likely to occur between poultry and humans in these settings.
In contrast, infections with animal-derived VRE have rarely
been reported (8), and it has been hypothesized that E. fae-
cium strains causing infections or hospital epidemics are ge-
netically distinct from animal-derived strains (20, 21). Further
studies are needed to elucidate the differences and communi-
cation between various VRE populations.
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