Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Apr;109(4):325–333. doi: 10.1289/ehp.01109325

Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions.

S Ebelt 1, M Brauer 1, J Cyrys 1, T Tuch 1, W G Kreyling 1, H E Wichmann 1, J Heinrich 1
PMCID: PMC1240271  PMID: 11335179

Abstract

The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and consequent decreased emissions of SO(2) and larger particles. These decreases in coal combustion and the decreased concentrations of SO(2) and particles of larger size classes may have led to decreased particle scavenging and may be partially responsible for the observed increases in ultrafine particles. Traffic-related changes, such as increased numbers of trucks and increased use of diesel vehicles in Erfurt, were also associated with increased number concentrations of ultrafine particles. Morning particle peaks of all sizes were associated with NO and CO (markers for traffic) in both the 1991 and 1998 periods. There were significant differences in the ultrafine particle levels for morning hours between 1991 and 1998, suggesting that traffic was the cause of this increase.

Full Text

The Full Text of this article is available as a PDF (125.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brauer M., Dumyahn T. S., Spengler J. D., Gutschmidt K., Heinrich J., Wichmann H. E. Measurement of acidic aerosol species in eastern Europe: implications for air pollution epidemiology. Environ Health Perspect. 1995 May;103(5):482–488. doi: 10.1289/ehp.95103482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cadle S. H., Gorse R. A., Jr, Bailey B. K., Lawson D. R. Real-world vehicle emissions: a summary of the Ninth Coordinating Research Council On-Road Vehicle Emissions Workshop. J Air Waste Manag Assoc. 2000 Feb;50(2):278–291. doi: 10.1080/10473289.2000.10464000. [DOI] [PubMed] [Google Scholar]
  3. Heinrich J., Hoelscher B., Wichmann H. E. Decline of ambient air pollution and respiratory symptoms in children. Am J Respir Crit Care Med. 2000 Jun;161(6):1930–1936. doi: 10.1164/ajrccm.161.6.9906105. [DOI] [PubMed] [Google Scholar]
  4. Krämer U., Behrendt H., Dolgner R., Ranft U., Ring J., Willer H., Schlipköter H. W. Airway diseases and allergies in East and West German children during the first 5 years after reunification: time trends and the impact of sulphur dioxide and total suspended particles. Int J Epidemiol. 1999 Oct;28(5):865–873. doi: 10.1093/ije/28.5.865. [DOI] [PubMed] [Google Scholar]
  5. Pekkanen J., Timonen K. L., Ruuskanen J., Reponen A., Mirme A. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res. 1997;74(1):24–33. doi: 10.1006/enrs.1997.3750. [DOI] [PubMed] [Google Scholar]
  6. Peters A., Goldstein I. F., Beyer U., Franke K., Heinrich J., Dockery D. W., Spengler J. D., Wichmann H. E. Acute health effects of exposure to high levels of air pollution in eastern Europe. Am J Epidemiol. 1996 Sep 15;144(6):570–581. doi: 10.1093/oxfordjournals.aje.a008967. [DOI] [PubMed] [Google Scholar]
  7. Peters A., Wichmann H. E., Tuch T., Heinrich J., Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med. 1997 Apr;155(4):1376–1383. doi: 10.1164/ajrccm.155.4.9105082. [DOI] [PubMed] [Google Scholar]
  8. Seaton A., MacNee W., Donaldson K., Godden D. Particulate air pollution and acute health effects. Lancet. 1995 Jan 21;345(8943):176–178. doi: 10.1016/s0140-6736(95)90173-6. [DOI] [PubMed] [Google Scholar]
  9. Sjödin A., Sjöberg K., Svanberg P. A., Backström H. Verification of expected trends in urban traffic NOx emissions from long-term measurements of ambient NO2 concentrations in urban air. Sci Total Environ. 1996 Oct 28;189-190:213–220. doi: 10.1016/0048-9697(96)05212-6. [DOI] [PubMed] [Google Scholar]
  10. Spix C., Heinrich J., Dockery D., Schwartz J., Völksch G., Schwinkowski K., Cöllen C., Wichmann H. E. Air pollution and daily mortality in Erfurt, east Germany, 1980-1989. Environ Health Perspect. 1993 Nov;101(6):518–526. doi: 10.1289/ehp.93101518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wichmann H. E., Heinrich J. Health effects of high level exposure to traditional pollutants in East Germany--review and ongoing research. Environ Health Perspect. 1995 Mar;103 (Suppl 2):29–35. doi: 10.1289/ehp.95103s229. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES