Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Mar;109(Suppl 1):49–68. doi: 10.1289/ehp.01109s149

Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology.

P O Darnerud 1, G S Eriksen 1, T Jóhannesson 1, P B Larsen 1, M Viluksela 1
PMCID: PMC1240542  PMID: 11250805

Abstract

Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in plastics (concentration, 5--30%) and in textile coatings. Commercial products consist predominantly of penta-, octa-, and decabromodiphenyl ether mixtures, and global PBDE production is about 40,000 tons per year. PBDEs are bioaccumulated and biomagnified in the environment, and comparatively high levels are often found in aquatic biotopes from different parts of the world. During the mid-1970--1980s there was a substantial increase in the PBDE levels with time in both sediments and aquatic biota, whereas the latest Swedish data (pike and guillemot egg) may indicate that levels are at steady state or are decreasing. However, exponentially increasing PBDE levels have been observed in mother's milk during 1972--1997. Based on levels in food from 1999, the dietary intake of PBDE in Sweden has been estimated to be 0.05 microg per day. Characteristic end points of animal toxicity are hepatotoxicity, embryotoxicity, and thyroid effects as well as maternal toxicity during gestation. Recently, behavioral effects have been observed in mice on administration of PBDEs during a critical period after birth. Based on the critical effects reported in available studies, we consider the lowest-observed-adverse-effect level (LOAEL) value of the PBDE group to be 1 mg/kg/day (primarily based on effects of pentaBDEs). In conclusion, with the scientific knowledge of today and based on Nordic intake data, the possible consumer health risk from PBDEs appears limited, as a factor of over 10(6) separates the estimated present mean dietary intake from the suggested LOAEL value. However, the presence of many and important data gaps, including those in carcinogenicity, reproduction, and developmental toxicity, as well as additional routes of exposure, make this conclusion only preliminary. Moreover, the time trend of PBDEs in human breast milk is alarming for the future.

Full Text

The Full Text of this article is available as a PDF (861.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breslin W. J., Kirk H. D., Zimmer M. A. Teratogenic evaluation of a polybromodiphenyl oxide mixture in New Zealand white rabbits following oral exposure. Fundam Appl Toxicol. 1989 Jan;12(1):151–157. doi: 10.1016/0272-0590(89)90070-5. [DOI] [PubMed] [Google Scholar]
  2. Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):59–84. doi: 10.1177/074823379801400107. [DOI] [PubMed] [Google Scholar]
  3. Brouwer A., van den Berg K. J. Binding of a metabolite of 3,4,3',4'-tetrachlorobiphenyl to transthyretin reduces serum vitamin A transport by inhibiting the formation of the protein complex carrying both retinol and thyroxin. Toxicol Appl Pharmacol. 1986 Sep 30;85(3):301–312. doi: 10.1016/0041-008x(86)90337-6. [DOI] [PubMed] [Google Scholar]
  4. Carlson G. P. Induction of xenobiotic metabolism in rats by brominated diphenyl ethers administered for 90 days. Toxicol Lett. 1980 Aug;6(3):207–212. doi: 10.1016/0378-4274(80)90193-9. [DOI] [PubMed] [Google Scholar]
  5. Carlson G. P. Induction of xenobiotic metabolism in rats by short-term administration of brominated diphenyl ethers. Toxicol Lett. 1980 Jan;5(1):19–25. doi: 10.1016/0378-4274(80)90143-5. [DOI] [PubMed] [Google Scholar]
  6. Chui Y. C., Hansell M. M., Addison R. F., Law F. C. Effects of chlorinated diphenyl ethers on the mixed-function oxidases and ultrastructure of rat and trout liver. Toxicol Appl Pharmacol. 1985 Nov;81(2):287–294. doi: 10.1016/0041-008x(85)90165-6. [DOI] [PubMed] [Google Scholar]
  7. DeCarlo V. J. Studies on brominated chemicals in the environment. Ann N Y Acad Sci. 1979 May 31;320:678–681. doi: 10.1111/j.1749-6632.1979.tb56642.x. [DOI] [PubMed] [Google Scholar]
  8. Fernandez-Salguero P. M., Hilbert D. M., Rudikoff S., Ward J. M., Gonzalez F. J. Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol. 1996 Sep;140(1):173–179. doi: 10.1006/taap.1996.0210. [DOI] [PubMed] [Google Scholar]
  9. Fernlöf G., Gadhasson I., Pödra K., Darnerud P. O., Thuvander A. Lack of effects of some individual polybrominated diphenyl ether (PBDE) and polychlorinated biphenyl (PCB) congeners on human lymphocyte functions in vitro. Toxicol Lett. 1997 Feb 7;90(2-3):189–197. doi: 10.1016/s0378-4274(96)03848-9. [DOI] [PubMed] [Google Scholar]
  10. Fowles J. R., Fairbrother A., Baecher-Steppan L., Kerkvliet N. I. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology. 1994 Jan 26;86(1-2):49–61. doi: 10.1016/0300-483x(94)90052-3. [DOI] [PubMed] [Google Scholar]
  11. Fu X., Schmitz F. J., Govindan M., Abbas S. A., Hanson K. M., Horton P. A., Crews P., Laney M., Schatzman R. C., Schatzman C. Enzyme inhibitors: new and known polybrominated phenols and diphenyl ethers from four Indo-Pacific Dysidea sponges. J Nat Prod. 1995 Sep;58(9):1384–1391. doi: 10.1021/np50123a008. [DOI] [PubMed] [Google Scholar]
  12. Haddow J. E., Palomaki G. E., Allan W. C., Williams J. R., Knight G. J., Gagnon J., O'Heir C. E., Mitchell M. L., Hermos R. J., Waisbren S. E. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999 Aug 19;341(8):549–555. doi: 10.1056/NEJM199908193410801. [DOI] [PubMed] [Google Scholar]
  13. Hanberg A., Ståhlberg M., Georgellis A., de Wit C., Ahlborg U. G. Swedish dioxin survey: evaluation of the H-4-II E bioassay for screening environmental samples for dioxin-like enzyme induction. Pharmacol Toxicol. 1991 Dec;69(6):442–449. doi: 10.1111/j.1600-0773.1991.tb01327.x. [DOI] [PubMed] [Google Scholar]
  14. Helleday T., Tuominen K. L., Bergman A., Jenssen D. Brominated flame retardants induce intragenic recombination in mammalian cells. Mutat Res. 1999 Feb 19;439(2):137–147. doi: 10.1016/s1383-5718(98)00186-7. [DOI] [PubMed] [Google Scholar]
  15. Hooper K., McDonald T. A. The PBDEs: an emerging environmental challenge and another reason for breast-milk monitoring programs. Environ Health Perspect. 2000 May;108(5):387–392. doi: 10.1289/ehp.00108387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Howie L., Dickerson R., Davis D., Safe S. Immunosuppressive and monooxygenase induction activities of polychlorinated diphenyl ether congeners in C57BL/6N mice: quantitative structure-activity relationships. Toxicol Appl Pharmacol. 1990 Sep 1;105(2):254–263. doi: 10.1016/0041-008x(90)90187-y. [DOI] [PubMed] [Google Scholar]
  17. Kociba R. J., Keeler P. A., Park C. N., Gehring P. J. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): results of a 13-week oral toxicity study in rats. Toxicol Appl Pharmacol. 1976 Mar;35(3):553–574. doi: 10.1016/0041-008x(76)90078-8. [DOI] [PubMed] [Google Scholar]
  18. Koster P., Debets F. M., Strik J. J. Porphyrinogenic action of fire retardants. Bull Environ Contam Toxicol. 1980 Aug;25(2):313–315. doi: 10.1007/BF01985530. [DOI] [PubMed] [Google Scholar]
  19. Kuehl D. W., Haebler R. Organochlorine, organobromine, metal, and selenium residues in bottlenose dolphins (Tursiops truncatus) collected during an unusual mortality event in the Gulf of Mexico, 1990. Arch Environ Contam Toxicol. 1995 May;28(4):494–499. doi: 10.1007/BF00211632. [DOI] [PubMed] [Google Scholar]
  20. Lawrence B. P., Leid M., Kerkvliet N. I. Distribution and behavior of the Ah receptor in murine T lymphocytes. Toxicol Appl Pharmacol. 1996 Jun;138(2):275–284. doi: 10.1006/taap.1996.0126. [DOI] [PubMed] [Google Scholar]
  21. Lindström G., Wingfors H., Dam M., van Bavel B. Identification of 19 polybrominated diphenyl ethers (PBDEs) in long-finned pilot whale (Globicephala melas) from the Atlantic. Arch Environ Contam Toxicol. 1999 Apr;36(3):355–363. doi: 10.1007/s002449900482. [DOI] [PubMed] [Google Scholar]
  22. McKinney J. D., Fawkes J., Jordan S., Chae K., Oatley S., Coleman R. E., Briner W. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) as a potent and persistent thyroxine agonist: a mechanistic model for toxicity based on molecular reactivity. Environ Health Perspect. 1985 Sep;61:41–53. doi: 10.1289/ehp.856141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKinney J. D. Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site. Environ Health Perspect. 1989 Jul;82:323–336. doi: 10.1289/ehp.8982323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McKinney J. D., Waller C. L. Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect. 1994 Mar;102(3):290–297. doi: 10.1289/ehp.94102290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morse D. C., Groen D., Veerman M., van Amerongen C. J., Koëter H. B., Smits van Prooije A. E., Visser T. J., Koeman J. H., Brouwer A. Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats. Toxicol Appl Pharmacol. 1993 Sep;122(1):27–33. doi: 10.1006/taap.1993.1168. [DOI] [PubMed] [Google Scholar]
  26. Norris J. M., Kociba R. J., Schwetz B. A., Rose J. Q., Humiston C. G., Jewett G. L., Gehring P. J., Mailhes J. B. Toxicology of octabromobiphenyl and decabromodiphenyl oxide. Environ Health Perspect. 1975 Jun;11:153–161. doi: 10.1289/ehp.7511153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orn U., Klasson-Wehler E. Metabolism of 2,2',4,4'-tetrabromodiphenyl ether in rat and mouse. Xenobiotica. 1998 Feb;28(2):199–211. [PubMed] [Google Scholar]
  28. Pohjanvirta R., Tuomisto J. Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models. Pharmacol Rev. 1994 Dec;46(4):483–549. [PubMed] [Google Scholar]
  29. Porterfield S. P. Vulnerability of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ Health Perspect. 1994 Jun;102 (Suppl 2):125–130. doi: 10.1289/ehp.94102125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Raasmaja A., Viluksela M., Rozman K. K. Decreased liver type I 5'-deiodinase and increased brown adipose tissue type II 5'-deiodinase activity in 2,3,7,8-tetrachlorobibenzo-p-dioxin (TCDD)-treated Long-Evans rats. Toxicology. 1996 Dec 18;114(3):199–205. doi: 10.1016/s0300-483x(96)03488-9. [DOI] [PubMed] [Google Scholar]
  31. Rosiak K. L., Seo B. W., Chu I., Francis B. M. Effects of maternal exposure to chlorinated diphenyl ethers on thyroid hormone concentrations in maternal and juvenile rats. J Environ Sci Health B. 1997 May;32(3):377–393. doi: 10.1080/03601239709373093. [DOI] [PubMed] [Google Scholar]
  32. Rosiak K., Li M. H., Degitz S. J., Skalla D. W., Chu I., Francis B. M. Maternal and developmental toxicity of polychlorinated diphenyl ethers (PCDEs) in Swiss-Webster mice and Sprague-Dawley rats. Toxicology. 1997 Sep 5;121(3):191–204. doi: 10.1016/s0300-483x(97)00066-8. [DOI] [PubMed] [Google Scholar]
  33. Rozman K. K. ED50 for EROD induction and ED50 for PFCs/spleen. Toxicol Appl Pharmacol. 1991 May;108(3):568–569. doi: 10.1016/0041-008x(91)90103-l. [DOI] [PubMed] [Google Scholar]
  34. Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol. 1990;21(1):51–88. doi: 10.3109/10408449009089873. [DOI] [PubMed] [Google Scholar]
  35. Sanderson J. T., Aarts J. M., Brouwer A., Froese K. L., Denison M. S., Giesy J. P. Comparison of Ah receptor-mediated luciferase and ethoxyresorufin-O-deethylase induction in H4IIE cells: implications for their use as bioanalytical tools for the detection of polyhalogenated aromatic hydrocarbons. Toxicol Appl Pharmacol. 1996 Apr;137(2):316–325. doi: 10.1006/taap.1996.0086. [DOI] [PubMed] [Google Scholar]
  36. Schmidt S., Fortnagel P., Wittich R. M. Biodegradation and transformation of 4,4'- and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33. Appl Environ Microbiol. 1993 Nov;59(11):3931–3933. doi: 10.1128/aem.59.11.3931-3933.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sjödin A., Hagmar L., Klasson-Wehler E., Kronholm-Diab K., Jakobsson E., Bergman A. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers. Environ Health Perspect. 1999 Aug;107(8):643–648. doi: 10.1289/ehp.107-1566483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Watanabe I., Tatsukawa R. Formation of brominated dibenzofurans from the photolysis of flame retardant decabromobiphenyl ether in hexane solution by UV and sun light. Bull Environ Contam Toxicol. 1987 Dec;39(6):953–959. doi: 10.1007/BF01689584. [DOI] [PubMed] [Google Scholar]
  39. Zinkl J. G., Vos J. G., Moore J. A., Gupta B. N. Hematologic and clinical chemistry effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals. Environ Health Perspect. 1973 Sep;5:111–118. doi: 10.1289/ehp.7305111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. el Dareer S. M., Kalin J. R., Tillery K. F., Hill D. L. Disposition of decabromobiphenyl ether in rats dosed intravenously or by feeding. J Toxicol Environ Health. 1987;22(4):405–415. doi: 10.1080/15287398709531082. [DOI] [PubMed] [Google Scholar]
  41. von Meyerinck L., Hufnagel B., Schmoldt A., Benthe H. F. Induction of rat liver microsomal cytochrome P-450 by the pentabromo diphenyl ether Bromkal 70 and half-lives of its components in the adipose tissue. Toxicology. 1990 Apr 30;61(3):259–274. doi: 10.1016/0300-483x(90)90176-h. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES