Skip to main content
. 2025 Sep 3;6:e68848. doi: 10.2196/68848

Table 7. Classification results of the IQ-OTH/NCCDa and chest CTb scan images datasets using preactivated deep learning models with various data augmentation techniques and segmentation of the lung region of interest (224×224 image resolution).

Data augmentation Rankc ResNet-34 MobileNetV3 (small) Vision Transformer (base-16) Swin Transformer (tiny)
Accuracy, % AUROCd, % Accuracy, % AUROC, % Accuracy, % AUROC, % Accuracy, % AUROC, %
IQ-OTH/NCCD dataset
 Base modele 5 96.65 99.13 95.43 97.28 89.94 96.51 93.60 98.21
 Cutoute 4 96.04 98.86 95.43 96.33 92.38 96.20 93.90 97.80
 Random Erasinge 3 95.73 97.45 96.65f 97.29 91.46 96.27 94.82f 98.00
 MixUpe,g 6 95.87 99.19f 91.77 97.11 91.77 96.27 93.29 97.52
 CutMix 2 96.65 98.86 94.51 96.39 93.90f 97.64f 93.29 97.52
 Random Pixel Swapg 1 97.56f 98.61 96.65f 98.00f 92.38 96.97 94.82f 98.12f
Chest CT scan images dataset
 Base model 2 95.19 99.03 87.82 96.83f 82.69 95.48 90.71 98.11
 Cutoute 4 94.55 98.85 88.14 97.66 80.77 93.86 88.14 97.32
 Random Erasinge,g 5 94.55 98.75 86.54 96.52 79.81 89.72 86.86 97.16
 MixUpe,g 6 94.55 98.77 82.05 95.33 78.85 93.29 85.90 97.10
 CutMix 3 95.19 99.05f 86.54 96.89 86.86f 96.43f 87.82 96.73
 Random Pixel Swap 1 95.51f 98.86 90.71f 97.51 83.65 95.83 91.35f 98.36f
a

IQ-OTH/NCCD: Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases.

b

CT: computed tomography.

c

Rank represents the overall rating for each technique, with “1” indicating the best technique across all models.

d

AUROC: area under the receiver operating characteristic curve.

e

Significant difference between an augmentation technique and the Random Pixel Swap technique across all models.

f

Highest value in the column.

g

Significant difference between training using an augmentation technique and the base model across all models.