Abstract
We studied the pharmacokinetics of dichloroacetate (DCA) in naive rats and rats depleted of glutathione S-transferase-zeta (GST-zeta), at doses approaching human daily exposure levels. We also compared in vitro metabolism of DCA by rat and human liver cytosol. Jugular vein-cannulated male Fischer-344 rats received graded doses of DCA ranging from 0.05 to 20 mg/kg (intravenously or by gavage), and we collected time-course blood samples from the cannulas. GST-zeta activity was depleted by exposing rats to 0.2 g/L DCA in drinking water for 7 days before initiation of pharmacokinetic studies. Elimination of DCA by naive rats was so rapid that only 1-20 mg/kg intravenous and 5 and 20 mg/kg gavage doses provided plasma concentrations above the method detection limit of 6 ng/mL. GST-zeta depletion slowed DCA elimination from plasma, allowing kinetic analysis of doses as low as 0.05 mg/kg. DCA elimination was strongly dose dependent in the naive rats, with total body clearance declining with increasing dose. In the GST-zeta-depleted rats, the pharmacokinetics became linear at doses less than or equal to 1 mg/kg. Virtually all of the dose was eliminated through metabolic clearance; the rate of urinary elimination was < 1 mL/hr/kg. At higher oral doses (less than or equal to 5 mg/kg in GST-zeta-depleted and 20 mg/kg in naive rats), secondary peaks in the plasma concentration appeared long after the completion of the initial absorption phase. Oral bioavailability of DCA was 0-13% in naive and 14-75% in GST-zeta- depleted rats. Oral bioavailability of DCA in humans through consumption of drinking water was predicted to be very low and < 1%. The use of the GST-zeta-depleted rat as a model for assessing the kinetics of DCA in humans is supported by the similarity in pharmacokinetic parameter estimates and rate of in vitro metabolism of DCA by human and GST-zeta-depleted rat liver cytosol.
Full Text
The Full Text of this article is available as a PDF (534.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson W. B., Board P. G., Gargano B., Anders M. W. Inactivation of glutathione transferase zeta by dichloroacetic acid and other fluorine-lacking alpha-haloalkanoic acids. Chem Res Toxicol. 1999 Dec;12(12):1144–1149. doi: 10.1021/tx990085l. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown R. P., Delp M. D., Lindstedt S. L., Rhomberg L. R., Beliles R. P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997 Jul-Aug;13(4):407–484. doi: 10.1177/074823379701300401. [DOI] [PubMed] [Google Scholar]
- Bucher J. R. Doses in rodent cancer studies: sorting fact from fiction. Drug Metab Rev. 2000 May;32(2):153–163. doi: 10.1081/dmr-100100569. [DOI] [PubMed] [Google Scholar]
- Bull R. J., Birnbaum L. S., Cantor K. P., Rose J. B., Butterworth B. E., Pegram R., Tuomisto J. Water chlorination: essential process or cancer hazard? Fundam Appl Toxicol. 1995 Dec;28(2):155–166. doi: 10.1006/faat.1995.1156. [DOI] [PubMed] [Google Scholar]
- Carlile D. J., Stevens A. J., Ashforth E. I., Waghela D., Houston J. B. In vivo clearance of ethoxycoumarin and its prediction from In vitro systems. Use Of drug depletion and metabolite formation methods in hepatic microsomes and isolated hepatocytes. Drug Metab Dispos. 1998 Mar;26(3):216–221. [PubMed] [Google Scholar]
- Cornett R., James M. O., Henderson G. N., Cheung J., Shroads A. L., Stacpoole P. W. Inhibition of glutathione S-transferase zeta and tyrosine metabolism by dichloroacetate: a potential unifying mechanism for its altered biotransformation and toxicity. Biochem Biophys Res Commun. 1999 Sep 7;262(3):752–756. doi: 10.1006/bbrc.1999.1287. [DOI] [PubMed] [Google Scholar]
- Curry S. H., Lorenz A., Chu P. I., Limacher M., Stacpoole P. W. Disposition and pharmacodynamics of dichloroacetate (DCA) and oxalate following oral DCA doses. Biopharm Drug Dispos. 1991 Jul;12(5):375–390. doi: 10.1002/bdd.2510120507. [DOI] [PubMed] [Google Scholar]
- Davies B., Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993 Jul;10(7):1093–1095. doi: 10.1023/a:1018943613122. [DOI] [PubMed] [Google Scholar]
- DeAngelo A. B., Daniel F. B., Most B. M., Olson G. R. The carcinogenicity of dichloroacetic acid in the male Fischer 344 rat. Toxicology. 1996 Dec 18;114(3):207–221. doi: 10.1016/s0300-483x(96)03510-x. [DOI] [PubMed] [Google Scholar]
- Fox A. W., Sullivan B. W., Buffini J. D., Neichin M. L., Nicora R., Hoehler F. K., O'Rourke R., Stoltz R. R. Reduction of serum lactate by sodium dichloroacetate, and human pharmacokinetic-pharmacodynamic relationships. J Pharmacol Exp Ther. 1996 Nov;279(2):686–693. [PubMed] [Google Scholar]
- Gonzalez-Leon A., Schultz I. R., Xu G., Bull R. J. Pharmacokinetics and metabolism of dichloroacetate in the F344 rat after prior administration in drinking water. Toxicol Appl Pharmacol. 1997 Oct;146(2):189–195. doi: 10.1006/taap.1997.8232. [DOI] [PubMed] [Google Scholar]
- Hachamovitch R., Wicker P., Capasso J. M., Anversa P. Alterations of coronary blood flow and reserve with aging in Fischer 344 rats. Am J Physiol. 1989 Jan;256(1 Pt 2):H66–H73. doi: 10.1152/ajpheart.1989.256.1.H66. [DOI] [PubMed] [Google Scholar]
- Hui Y. F., Kolars J., Hu Z., Fleisher D. Intestinal clearance of H2-antagonists. Biochem Pharmacol. 1994 Jul 19;48(2):229–231. doi: 10.1016/0006-2952(94)90091-4. [DOI] [PubMed] [Google Scholar]
- James M. O., Cornett R., Yan Z., Henderson G. N., Stacpoole P. W. Glutathione-dependent conversion to glyoxylate, a major pathway of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in dichloroacetate-treated rats. Drug Metab Dispos. 1997 Nov;25(11):1223–1227. [PubMed] [Google Scholar]
- Krishna S., Agbenyega T., Angus B. J., Bedu-Addo G., Ofori-Amanfo G., Henderson G., Szwandt I. S., O'Brien R., Stacpoole P. W. Pharmacokinetics and pharmacodynamics of dichloroacetate in children with lactic acidosis due to severe malaria. QJM. 1995 May;88(5):341–349. [PubMed] [Google Scholar]
- Lin E. L., Mattox J. K., Daniel F. B. Tissue distribution, excretion, and urinary metabolites of dichloroacetic acid in the male Fischer 344 rat. J Toxicol Environ Health. 1993 Jan;38(1):19–32. doi: 10.1080/15287399309531697. [DOI] [PubMed] [Google Scholar]
- Lipscomb J. C., Mahle D. A., Brashear W. T., Barton H. A. Dichloroacetic acid: metabolism in cytosol. Drug Metab Dispos. 1995 Nov;23(11):1202–1205. [PubMed] [Google Scholar]
- Lukas G., Vyas K. H., Brindle S. D., Le Sher A. R., Wagner W. E., Jr Biological disposition of sodium dichloroacetate in animals and humans after intravenous administration. J Pharm Sci. 1980 Apr;69(4):419–421. doi: 10.1002/jps.2600690415. [DOI] [PubMed] [Google Scholar]
- Oberle R. L., Amidon G. L. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; an explanation for the double peak phenomenon. J Pharmacokinet Biopharm. 1987 Oct;15(5):529–544. doi: 10.1007/BF01061761. [DOI] [PubMed] [Google Scholar]
- Okita R. T., Okita J. R. Characterization of a cytochrome P450 from di(2-ethylhexyl) phthalate-treated rats which hydroxylates fatty acids. Arch Biochem Biophys. 1992 May 1;294(2):475–481. doi: 10.1016/0003-9861(92)90714-8. [DOI] [PubMed] [Google Scholar]
- Schultz I. R., Merdink J. L., Gonzalez-Leon A., Bull R. J. Comparative toxicokinetics of chlorinated and brominated haloacetates in F344 rats. Toxicol Appl Pharmacol. 1999 Jul 15;158(2):103–114. doi: 10.1006/taap.1999.8698. [DOI] [PubMed] [Google Scholar]
- Schultz I. R., Merdink J. L., Gonzalez-Leon A., Bull R. J. Dichloroacetate toxicokinetics and disruption of tyrosine catabolism in B6C3F1 mice: dose-response relationships and age as a modifying factor. Toxicology. 2002 May 1;173(3):229–247. doi: 10.1016/s0300-483x(02)00034-3. [DOI] [PubMed] [Google Scholar]
- Schultz I. R., Sylvester S. R. Stereospecific toxicokinetics of bromochloro- and chlorofluoroacetate: effect of GST-zeta depletion. Toxicol Appl Pharmacol. 2001 Sep 1;175(2):104–113. doi: 10.1006/taap.2001.9250. [DOI] [PubMed] [Google Scholar]
- Shangraw R. E., Fisher D. M. Pharmacokinetics of dichloroacetate in patients undergoing liver transplantation. Anesthesiology. 1996 Apr;84(4):851–858. doi: 10.1097/00000542-199604000-00012. [DOI] [PubMed] [Google Scholar]
- Smith M. K., Randall J. L., Read E. J., Stober J. A. Developmental toxicity of dichloroacetate in the rat. Teratology. 1992 Sep;46(3):217–223. doi: 10.1002/tera.1420460305. [DOI] [PubMed] [Google Scholar]
- Stacpoole P. W., Barnes C. L., Hurbanis M. D., Cannon S. L., Kerr D. S. Treatment of congenital lactic acidosis with dichloroacetate. Arch Dis Child. 1997 Dec;77(6):535–541. doi: 10.1136/adc.77.6.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stacpoole P. W., Henderson G. N., Yan Z., James M. O. Clinical pharmacology and toxicology of dichloroacetate. Environ Health Perspect. 1998 Aug;106 (Suppl 4):989–994. doi: 10.1289/ehp.98106s4989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong Z., Board P. G., Anders M. W. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem J. 1998 Apr 15;331(Pt 2):371–374. doi: 10.1042/bj3310371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toth G. P., Kelty K. C., George E. L., Read E. J., Smith M. K. Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate. Fundam Appl Toxicol. 1992 Jul;19(1):57–63. doi: 10.1016/0272-0590(92)90028-g. [DOI] [PubMed] [Google Scholar]
- Tzeng H. F., Blackburn A. C., Board P. G., Anders M. W. Polymorphism- and species-dependent inactivation of glutathione transferase zeta by dichloroacetate. Chem Res Toxicol. 2000 Apr;13(4):231–236. doi: 10.1021/tx990175q. [DOI] [PubMed] [Google Scholar]
- Weisel C. P., Kim H., Haltmeier P., Klotz J. B. Exposure estimates to disinfection by-products of chlorinated drinking water. Environ Health Perspect. 1999 Feb;107(2):103–110. doi: 10.1289/ehp.99107103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wells P. G., Moore G. W., Rabin D., Wilkinson G. R., Oates J. A., Stacpoole P. W. Metabolic effects and pharmacokinetics of intravenously administered dichloroacetate in humans. Diabetologia. 1980 Aug;19(2):109–113. doi: 10.1007/BF00421855. [DOI] [PubMed] [Google Scholar]
- Williams L. R., Leggett R. W. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989 Aug;10(3):187–217. doi: 10.1088/0143-0815/10/3/001. [DOI] [PubMed] [Google Scholar]
