Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Nov;110(11):1105–1111. doi: 10.1289/ehp.021101105

Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). I. Effects of DEPs on early pulmonary responses.

Xue-Jun Yin 1, Rosana Schafer 1, Jane Y C Ma 1, James M Antonini 1, David D Weissman 1, Paul D Siegel 1, Mark W Barger 1, Jenny R Roberts 1, Joseph K-H Ma 1
PMCID: PMC1241066  PMID: 12417481

Abstract

It has been hypothesized that diesel exhaust particles (DEPs) aggravate pulmonary bacterial infection by both innate and cell-mediated immune mechanisms. To test this hypothesis, we investigated the effects of DEP exposure on the functions of alveolar macrophages (AMs) and lymphocytes from lung-draining lymph nodes using a rat Listeria monocytogenes infection model. In the present study, we focused on the effects of DEP exposure on AM functions, including phagocytic activity and secretion of proinflammatory cytokines. The Listeria infection model was characterized by an increase in neutrophil count, albumin content, and acellular lactate dehydrogenase activity in the bronchoalveolar lavage (BAL) fluid at 3 and 7 days postinfection. Short-term DEP inhalation (50 and 100 mg/m(3), 4 hr) resulted in a dose-dependent suppression of lung clearance of Listeria, with the highest bacteria count occurring at day 3. This aggravated bacterial infection was consistent with the inhibitory effect of DEPs on macrophage functions. DEPs suppressed phagocytosis and Listeria-induced basal secretion of interleukin-1ss (IL-1ss) and IL-12 by AMs in a dose-dependent manner. The amount of IL-1ss and IL-12 in the BAL fluid was also reduced by DEP exposure. In addition, DEPs decreased Listeria-induced lipopolysaccharide-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha), IL-1ss, and IL-12 from AMs. These results suggest that DEPs retard bacterial clearance by inhibiting AM phagocytosis and weaken the innate immunity by inhibiting AM secretion of IL-1ss and TNF-alpha. DEPs may also suppress cell-mediated immunity by inhibiting AM secretion of IL-12, a key cytokine for the initiation of T helper type 1 cell development in Listeria infection.

Full Text

The Full Text of this article is available as a PDF (562.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonini J. M., Yang H. M., Ma J. Y., Roberts J. R., Barger M. W., Butterworth L., Charron T. G., Castranova V. Subchronic silica exposure enhances respiratory defense mechanisms and the pulmonary clearance of Listeria monocytogenes in rats. Inhal Toxicol. 2000 Nov;12(11):1017–1036. doi: 10.1080/08958370050164635. [DOI] [PubMed] [Google Scholar]
  2. Bancroft G. J., Sheehan K. C., Schreiber R. D., Unanue E. R. Tumor necrosis factor is involved in the T cell-independent pathway of macrophage activation in scid mice. J Immunol. 1989 Jul 1;143(1):127–130. [PubMed] [Google Scholar]
  3. Battigelli M. C., Hengstenberg F., Mannella R. J., Thomas A. P. Mucociliary activity. Arch Environ Health. 1966 Apr;12(4):460–466. doi: 10.1080/00039896.1966.10664407. [DOI] [PubMed] [Google Scholar]
  4. Bond J. A., Johnson N. F., Snipes M. B., Mauderly J. L. DNA adduct formation in rat alveolar type II cells: cells potentially at risk for inhaled diesel exhaust. Environ Mol Mutagen. 1990;16(2):64–69. doi: 10.1002/em.2850160203. [DOI] [PubMed] [Google Scholar]
  5. Bond J. A., Mauderly J. L., Wolff R. K. Concentration- and time-dependent formation of DNA adducts in lungs of rats exposed to diesel exhaust. Toxicology. 1990 Jan-Feb;60(1-2):127–135. doi: 10.1016/0300-483x(90)90167-f. [DOI] [PubMed] [Google Scholar]
  6. Campbell P. A. Macrophage-Listeria interactions. Immunol Ser. 1994;60:313–328. [PubMed] [Google Scholar]
  7. Castranova V., Bowman L., Reasor M. J., Lewis T., Tucker J., Miles P. R. The response of rat alveolar macrophages to chronic inhalation of coal dust and/or diesel exhaust. Environ Res. 1985 Apr;36(2):405–419. doi: 10.1016/0013-9351(85)90034-9. [DOI] [PubMed] [Google Scholar]
  8. Czuprynski C. J., Haak-Frendscho M., Maroushek N., Brown J. F. Effects of recombinant human interleukin-6 alone and in combination with recombinant interleukin-1 alpha and tumor necrosis factor alpha on antibacterial resistance in mice. Antimicrob Agents Chemother. 1992 Jan;36(1):68–70. doi: 10.1128/aac.36.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diaz-Sanchez D., Dotson A. R., Takenaka H., Saxon A. Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest. 1994 Oct;94(4):1417–1425. doi: 10.1172/JCI117478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diaz-Sanchez D. The role of diesel exhaust particles and their associated polyaromatic hydrocarbons in the induction of allergic airway disease. Allergy. 1997;52(38 Suppl):52–58. doi: 10.1111/j.1398-9995.1997.tb04871.x. [DOI] [PubMed] [Google Scholar]
  11. Dockery D. W., Pope C. A., 3rd, Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Jr, Speizer F. E. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993 Dec 9;329(24):1753–1759. doi: 10.1056/NEJM199312093292401. [DOI] [PubMed] [Google Scholar]
  12. Fearon D. T., Locksley R. M. The instructive role of innate immunity in the acquired immune response. Science. 1996 Apr 5;272(5258):50–53. doi: 10.1126/science.272.5258.50. [DOI] [PubMed] [Google Scholar]
  13. Fleming S. D., Campbell P. A. Some macrophages kill Listeria monocytogenes while others do not. Immunol Rev. 1997 Aug;158:69–77. doi: 10.1111/j.1600-065x.1997.tb00993.x. [DOI] [PubMed] [Google Scholar]
  14. Fujimaki H., Saneyoshi K., Shiraishi F., Imai T., Endo T. Inhalation of diesel exhaust enhances antigen-specific IgE antibody production in mice. Toxicology. 1997 Jan 15;116(1-3):227–233. doi: 10.1016/s0300-483x(96)03539-1. [DOI] [PubMed] [Google Scholar]
  15. Hahon N., Booth J. A., Wheeler R. Activity of diesel engine emission particulates on the interferon system. Environ Res. 1982 Aug;28(2):443–455. doi: 10.1016/0013-9351(82)90141-4. [DOI] [PubMed] [Google Scholar]
  16. Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. doi: 10.1126/science.8097338. [DOI] [PubMed] [Google Scholar]
  17. Jakab G. J., Risby T. H., Sehnert S. S., Hmieleski R. R., Farrington J. E. Suppression of alveolar macrophage membrane receptor-mediated phagocytosis by model and actual particle-adsorbate complexes. Initial contact with the alveolar macrophage membrane. Environ Health Perspect. 1990 Jun;86:337–344. doi: 10.1289/ehp.9086337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jakab G. J. The toxicologic interactions resulting from inhalation of carbon black and acrolein on pulmonary antibacterial and antiviral defenses. Toxicol Appl Pharmacol. 1993 Aug;121(2):167–175. doi: 10.1006/taap.1993.1142. [DOI] [PubMed] [Google Scholar]
  19. Kaufmann S. H. Immunity to intracellular bacteria. Annu Rev Immunol. 1993;11:129–163. doi: 10.1146/annurev.iy.11.040193.001021. [DOI] [PubMed] [Google Scholar]
  20. Laskin D. L., Pendino K. J. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol. 1995;35:655–677. doi: 10.1146/annurev.pa.35.040195.003255. [DOI] [PubMed] [Google Scholar]
  21. Le J., Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest. 1987 Mar;56(3):234–248. [PubMed] [Google Scholar]
  22. Leong B. K., Coombs J. K., Sabaitis C. P., Rop D. A., Aaron C. S. Quantitative morphometric analysis of pulmonary deposition of aerosol particles inhaled via intratracheal nebulization, intratracheal instillation or nose-only inhalation in rats. J Appl Toxicol. 1998 Mar-Apr;18(2):149–160. doi: 10.1002/(sici)1099-1263(199803/04)18:2<149::aid-jat490>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  23. Luster M. I., Munson A. E., Thomas P. T., Holsapple M. P., Fenters J. D., White K. L., Jr, Lauer L. D., Germolec D. R., Rosenthal G. J., Dean J. H. Development of a testing battery to assess chemical-induced immunotoxicity: National Toxicology Program's guidelines for immunotoxicity evaluation in mice. Fundam Appl Toxicol. 1988 Jan;10(1):2–19. doi: 10.1016/0272-0590(88)90247-3. [DOI] [PubMed] [Google Scholar]
  24. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Medzhitov R., Janeway C. A., Jr Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 1997 Feb;9(1):4–9. doi: 10.1016/s0952-7915(97)80152-5. [DOI] [PubMed] [Google Scholar]
  26. Mielke M. E., Peters C., Hahn H. Cytokines in the induction and expression of T-cell-mediated granuloma formation and protection in the murine model of listeriosis. Immunol Rev. 1997 Aug;158:79–93. doi: 10.1111/j.1600-065x.1997.tb00994.x. [DOI] [PubMed] [Google Scholar]
  27. Mocci S., Dalrymple S. A., Nishinakamura R., Murray R. The cytokine stew and innate resistance to L. monocytogenes. Immunol Rev. 1997 Aug;158:107–114. doi: 10.1111/j.1600-065x.1997.tb00996.x. [DOI] [PubMed] [Google Scholar]
  28. Park A. Y., Scott P. Il-12: keeping cell-mediated immunity alive. Scand J Immunol. 2001 Jun;53(6):529–532. doi: 10.1046/j.1365-3083.2001.00917.x. [DOI] [PubMed] [Google Scholar]
  29. Pfeffer K., Matsuyama T., Kündig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Krönke M., Mak T. W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993 May 7;73(3):457–467. doi: 10.1016/0092-8674(93)90134-c. [DOI] [PubMed] [Google Scholar]
  30. Pope C. A., 3rd, Dockery D. W., Spengler J. D., Raizenne M. E. Respiratory health and PM10 pollution. A daily time series analysis. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):668–674. doi: 10.1164/ajrccm/144.3_Pt_1.668. [DOI] [PubMed] [Google Scholar]
  31. Reasor M. J., McCloud C. M., DiMatteo M., Schafer R., Ima A., Lemaire I. Effects of amiodarone-induced phospholipidosis on pulmonary host defense functions in rats. Proc Soc Exp Biol Med. 1996 Apr;211(4):346–352. doi: 10.3181/00379727-211-43979. [DOI] [PubMed] [Google Scholar]
  32. Rothe J., Lesslauer W., Lötscher H., Lang Y., Koebel P., Köntgen F., Althage A., Zinkernagel R., Steinmetz M., Bluethmann H. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993 Aug 26;364(6440):798–802. doi: 10.1038/364798a0. [DOI] [PubMed] [Google Scholar]
  33. Schwartz J., Dockery D. W., Neas L. M. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc. 1996 Oct;46(10):927–939. [PubMed] [Google Scholar]
  34. Seaman M. S., Pérarnau B., Lindahl K. F., Lemonnier F. A., Forman J. Response to Listeria monocytogenes in mice lacking MHC class Ia molecules. J Immunol. 1999 May 1;162(9):5429–5436. [PubMed] [Google Scholar]
  35. Shen H., Tato C. M., Fan X. Listeria monocytogenes as a probe to study cell-mediated immunity. Curr Opin Immunol. 1998 Aug;10(4):450–458. doi: 10.1016/s0952-7915(98)80120-9. [DOI] [PubMed] [Google Scholar]
  36. Sibille Y., Reynolds H. Y. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis. 1990 Feb;141(2):471–501. doi: 10.1164/ajrccm/141.2.471. [DOI] [PubMed] [Google Scholar]
  37. Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol. 1998;70:83–243. doi: 10.1016/s0065-2776(08)60387-9. [DOI] [PubMed] [Google Scholar]
  38. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–276. doi: 10.1146/annurev.iy.13.040195.001343. [DOI] [PubMed] [Google Scholar]
  39. Van Loveren H., Rombout P. J., Wagenaar S. S., Walvoort H. C., Vos J. G. Effects of ozone on the defense to a respiratory Listeria monocytogenes infection in the rat. Suppression of macrophage function and cellular immunity and aggravation of histopathology in lung and liver during infection. Toxicol Appl Pharmacol. 1988 Jul;94(3):374–393. doi: 10.1016/0041-008x(88)90279-7. [DOI] [PubMed] [Google Scholar]
  40. Yang H. M., Antonini J. M., Barger M. W., Butterworth L., Roberts B. R., Ma J. K., Castranova V., Ma J. Y. Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats. Environ Health Perspect. 2001 May;109(5):515–521. doi: 10.1289/ehp.01109515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yang H. M., Barger M. W., Castranova V., Ma J. K., Yang J. J., Ma J. Y. Effects of diesel exhaust particles (DEP), carbon black, and silica on macrophage responses to lipopolysaccharide: evidence of DEP suppression of macrophage activity. J Toxicol Environ Health A. 1999 Nov 12;58(5):261–278. doi: 10.1080/009841099157232. [DOI] [PubMed] [Google Scholar]
  42. Yang H. M., Ma J. Y., Castranova V., Ma J. K. Effects of diesel exhaust particles on the release of interleukin-1 and tumor necrosis factor-alpha from rat alveolar macrophages. Exp Lung Res. 1997 May-Jun;23(3):269–284. doi: 10.3109/01902149709087372. [DOI] [PubMed] [Google Scholar]
  43. Yoshino S., Sagai M. Enhancement of collagen-induced arthritis in mice by diesel exhaust particles. J Pharmacol Exp Ther. 1999 Aug;290(2):524–529. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES