Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Jul;111(9):1158–1163. doi: 10.1289/ehp.5928

Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka Oryzias latipes.

Yiannis Kiparissis 1, Gordon C Balch 1, Tracy L Metcalfe 1, Chris D Metcalfe 1
PMCID: PMC1241568  PMID: 12842767

Abstract

The estrogenic isoflavone compound genistein recently has been found in the effluents of sewage treatment plants and pulp mills, and the related compound equol has been detected in the runoff from agricultural fields treated with hog manure. Waterborne exposures of Japanese medaka (Oryzias latipes) to equol from soon after hatch to approximately 100 days posthatch induced gonadal intersex (i.e., testis-ova) in males at incidences of 10 and 87% in equol treatments of 0.4 and 0.8 micro g/L, respectively. Exposure to the highest test concentration of genistein, 1,000 micro g/L, also caused a low incidence (i.e., 12%) of gonadal intersex in male medaka. The ovaries of female medaka from both equol and genistein treatments showed delayed oocyte maturation, atretic oocytes, an enlarged ovarian lumen, proliferation of somatic stromal tissue, and primordial germ cells; responses were concentration dependent. Alterations to externally visible secondary sex characteristics occurred in medaka exposed to both equol and genistein. In treatments with 1,000 micro g/L genistein, 72% of male medaka (as identified by the gonadal phenotype) showed feminized secondary sex characteristics. Gonadal intersex and alterations to secondary sex characteristics have been noted in several fish populations around the world. This laboratory study indicates that isoflavone compounds should be considered candidate estrogenic compounds that may be involved in the alteration of sexual development in feral fish populations.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adlercreutz C. H., Goldin B. R., Gorbach S. L., Höckerstedt K. A., Watanabe S., Hämäläinen E. K., Markkanen M. H., Mäkelä T. H., Wähälä K. T., Adlercreutz T. Soybean phytoestrogen intake and cancer risk. J Nutr. 1995 Mar;125(3 Suppl):757S–770S. doi: 10.1093/jn/125.3_Suppl.757S. [DOI] [PubMed] [Google Scholar]
  2. Bennetau-Pelissero C., Breton B B., Bennetau B., Corraze G., Le Menn F., Davail-Cuisset B., Helou C., Kaushik S. J. Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol. 2001 Feb;121(2):173–187. doi: 10.1006/gcen.2000.7585. [DOI] [PubMed] [Google Scholar]
  3. Birt D. F., Hendrich S., Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001 May-Jun;90(2-3):157–177. doi: 10.1016/s0163-7258(01)00137-1. [DOI] [PubMed] [Google Scholar]
  4. Bortone S. A., Davis W. P., Bundrick C. M. Morphological and behavioral characters in mosquitofish as potential bioindication of exposure to kraft mill effluent. Bull Environ Contam Toxicol. 1989 Sep;43(3):370–377. doi: 10.1007/BF01701871. [DOI] [PubMed] [Google Scholar]
  5. Brantley R. K., Wingfield J. C., Bass A. H. Sex steroid levels in Porichthys notatus, a fish with alternative reproductive tactics, and a review of the hormonal bases for male dimorphism among teleost fishes. Horm Behav. 1993 Sep;27(3):332–347. doi: 10.1006/hbeh.1993.1025. [DOI] [PubMed] [Google Scholar]
  6. Campbell D. R., Kurzer M. S. Flavonoid inhibition of aromatase enzyme activity in human preadipocytes. J Steroid Biochem Mol Biol. 1993 Sep;46(3):381–388. doi: 10.1016/0960-0760(93)90228-o. [DOI] [PubMed] [Google Scholar]
  7. Cheek A. O., Brouwer T. H., Carroll S., Manning S., McLachlan J. A., Brouwer M. Experimental evaluation of vitellogenin as a predictive biomarker for reproductive disruption. Environ Health Perspect. 2001 Jul;109(7):681–690. doi: 10.1289/ehp.01109681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cody R. P., Bortone S. A. Masculinization of mosquitofish as an indicator of exposure to kraft mill effluent. Bull Environ Contam Toxicol. 1997 Mar;58(3):429–436. doi: 10.1007/s001289900352. [DOI] [PubMed] [Google Scholar]
  9. Coldham N. G., Sauer M. J. Pharmacokinetics of [(14)C]Genistein in the rat: gender-related differences, potential mechanisms of biological action, and implications for human health. Toxicol Appl Pharmacol. 2000 Apr 15;164(2):206–215. doi: 10.1006/taap.2000.8902. [DOI] [PubMed] [Google Scholar]
  10. Edmunds J. S., McCarthy R. A., Ramsdell J. S. Permanent and functional male-to-female sex reversal in d-rR strain medaka (Oryzias latipes) following egg microinjection of o,p'-DDT. Environ Health Perspect. 2000 Mar;108(3):219–224. doi: 10.1289/ehp.00108219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harborne J. B., Williams C. A. Advances in flavonoid research since 1992. Phytochemistry. 2000 Nov;55(6):481–504. doi: 10.1016/s0031-9422(00)00235-1. [DOI] [PubMed] [Google Scholar]
  12. Harshbarger J. C., Coffey M. J., Young M. Y. Intersexes in Mississippi River shovelnose sturgeon sampled below Saint Louis, Missouri, USA. Mar Environ Res. 2000 Jul-Dec;50(1-5):247–250. doi: 10.1016/s0141-1136(00)00055-6. [DOI] [PubMed] [Google Scholar]
  13. Janz D. M., McMaster M. E., Munkittrick K. R., Van der Kraak G. Elevated ovarian follicular apoptosis and heat shock protein-70 expression in white sucker exposed to bleached kraft pulp mill effluent. Toxicol Appl Pharmacol. 1997 Dec;147(2):391–398. doi: 10.1006/taap.1997.8283. [DOI] [PubMed] [Google Scholar]
  14. Jenkins R., Angus R. A., McNatt H., Howell W. M., Kemppainen J. A., Kirk M., Wilson E. M. Identification of androstenedione in a river containing paper mill effluent. Environ Toxicol Chem. 2001 Jun;20(6):1325–1331. doi: 10.1897/1551-5028(2001)020<1325:ioaiar>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  15. Jobling S., Beresford N., Nolan M., Rodgers-Gray T., Brighty G. C., Sumpter J. P., Tyler C. R. Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biol Reprod. 2002 Feb;66(2):272–281. doi: 10.1095/biolreprod66.2.272. [DOI] [PubMed] [Google Scholar]
  16. Kiparissis Y., Hughes R., Metcalfe C., Ternes T. Identification of the isoflavonoid genistein in bleached kraft mill effluent. Environ Sci Technol. 2001 Jun 15;35(12):2423–2427. doi: 10.1021/es001679+. [DOI] [PubMed] [Google Scholar]
  17. Kolpin Dana W., Furlong Edward T., Meyer Michael T., Thurman E. Michael, Zaugg Steven D., Barber Larry B., Buxton Herbert T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol. 2002 Mar 15;36(6):1202–1211. doi: 10.1021/es011055j. [DOI] [PubMed] [Google Scholar]
  18. Latonnelle K., Le Menn F., Kaushik S. J., Bennetau-Pelissero C. Effects of dietary phytoestrogens in vivo and in vitro in rainbow trout and Siberian sturgeon: interests and limits of the in vitro studies of interspecies differences. Gen Comp Endocrinol. 2002 Mar;126(1):39–51. doi: 10.1006/gcen.2001.7773. [DOI] [PubMed] [Google Scholar]
  19. Le Bail J. C., Champavier Y., Chulia A. J., Habrioux G. Effects of phytoestrogens on aromatase, 3beta and 17beta-hydroxysteroid dehydrogenase activities and human breast cancer cells. Life Sci. 2000 Feb 25;66(14):1281–1291. doi: 10.1016/s0024-3205(00)00435-5. [DOI] [PubMed] [Google Scholar]
  20. MacLatchy D. L., Van Der Kraak G. J. The phytoestrogen beta-sitosterol alters the reproductive endocrine status of goldfish. Toxicol Appl Pharmacol. 1995 Oct;134(2):305–312. doi: 10.1006/taap.1995.1196. [DOI] [PubMed] [Google Scholar]
  21. Martin M. E., Haourigui M., Pelissero C., Benassayag C., Nunez E. A. Interactions between phytoestrogens and human sex steroid binding protein. Life Sci. 1996;58(5):429–436. doi: 10.1016/0024-3205(95)02308-9. [DOI] [PubMed] [Google Scholar]
  22. Mellanen P., Petänen T., Lehtimäki J., Mäkelä S., Bylund G., Holmbom B., Mannila E., Oikari A., Santti R. Wood-derived estrogens: studies in vitro with breast cancer cell lines and in vivo in trout. Toxicol Appl Pharmacol. 1996 Feb;136(2):381–388. doi: 10.1006/taap.1996.0046. [DOI] [PubMed] [Google Scholar]
  23. Metcalfe C. D., Metcalfe T. L., Kiparissis Y., Koenig B. G., Khan C., Hughes R. J., Croley T. R., March R. E., Potter T. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem. 2001 Feb;20(2):297–308. [PubMed] [Google Scholar]
  24. Munkittrick K. R., McMaster M. E., McCarthy L. H., Servos M. R., Van Der Kraak G. J. An overview of recent studies on the potential of pulp-mill effluents to alter reproductive parameters in fish. J Toxicol Environ Health B Crit Rev. 1998 Oct-Dec;1(4):347–371. doi: 10.1080/10937409809524558. [DOI] [PubMed] [Google Scholar]
  25. Pelissero C., Bennetau B., Babin P., Le Menn F., Dunogues J. The estrogenic activity of certain phytoestrogens in the Siberian sturgeon Acipenser baeri. J Steroid Biochem Mol Biol. 1991 Mar;38(3):293–299. doi: 10.1016/0960-0760(91)90100-j. [DOI] [PubMed] [Google Scholar]
  26. Pelissero C., Lenczowski M. J., Chinzi D., Davail-Cuisset B., Sumpter J. P., Fostier A. Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol. 1996 Feb;57(3-4):215–223. doi: 10.1016/0960-0760(95)00261-8. [DOI] [PubMed] [Google Scholar]
  27. Sheahan David A., Brighty Geoff C., Daniel Mic, Kirby Sonia J., Hurst Mark R., Kennedy Joe, Morris Steven, Routledge Edwin J., Sumpter John P., Waldock Michael J. Estrogenic activity measured in a sewage treatment works treating industrial inputs containing high concentrations of alkylphenolic compounds--a case study. Environ Toxicol Chem. 2002 Mar;21(3):507–514. [PubMed] [Google Scholar]
  28. Simpson M. G., Parry M., Kleinkauf A., Swarbreck D., Walker P., Leah R. T. Pathology of the liver, kidney and gonad of flounder (Platichthys flesus) from a UK estuary impacted by endocrine disrupting chemicals. Mar Environ Res. 2000 Jul-Dec;50(1-5):283–287. doi: 10.1016/s0141-1136(00)00089-1. [DOI] [PubMed] [Google Scholar]
  29. Spengler P., Körner W., Metzger J. W. Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 1. Chemical analysis. Environ Toxicol Chem. 2001 Oct;20(10):2133–2141. [PubMed] [Google Scholar]
  30. Sumpter J. P. Xenoendorine disrupters--environmental impacts. Toxicol Lett. 1998 Dec 28;102-103:337–342. doi: 10.1016/s0378-4274(98)00328-2. [DOI] [PubMed] [Google Scholar]
  31. Ternes T. A., Stumpf M., Mueller J., Haberer K., Wilken R. D., Servos M. Behavior and occurrence of estrogens in municipal sewage treatment plants--I. Investigations in Germany, Canada and Brazil. Sci Total Environ. 1999 Jan 12;225(1-2):81–90. doi: 10.1016/s0048-9697(98)00334-9. [DOI] [PubMed] [Google Scholar]
  32. Viganò L., Arillo A., Bottero S., Massari A., Mandich A. First observation of intersex cyprinids in the Po River (Italy). Sci Total Environ. 2001 Mar 26;269(1-3):189–194. doi: 10.1016/s0048-9697(00)00821-4. [DOI] [PubMed] [Google Scholar]
  33. YAMAMOTO T. O., MATSUDA N. Effects of estradiol, stilbestrol and some alkyl-carbonyl androstanes upon sex differentiation in the medaka. Orvzias latipes. Gen Comp Endocrinol. 1963 Apr;3:101–110. doi: 10.1016/0016-6480(63)90029-7. [DOI] [PubMed] [Google Scholar]
  34. YAMAMOTO T. Artificial induction of functional sex-reversal in genotypic females of the medaka (Oryzias latipes). J Exp Zool. 1958 Mar;137(2):227–263. doi: 10.1002/jez.1401370203. [DOI] [PubMed] [Google Scholar]
  35. Zava D. T., Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer. 1997;27(1):31–40. doi: 10.1080/01635589709514498. [DOI] [PubMed] [Google Scholar]
  36. Zhang Luling, Khan Ikhlas A., Foran Christy M. Characterization of the estrogenic response to genistein in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol. 2002 Jun;132(2):203–211. doi: 10.1016/s1532-0456(02)00067-4. [DOI] [PubMed] [Google Scholar]
  37. Zillioux E. J., Johnson I. C., Kiparissis Y., Metcalfe C. D., Wheat J. V., Ward S. G., Liu H. The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts: a partial life-cycle test with 17alpha-ethynylestradiol. Environ Toxicol Chem. 2001 Sep;20(9):1968–1978. [PubMed] [Google Scholar]
  38. van Aerle R., Nolan T. M., Jobling S., Christiansen L. B., Sumpter J. P., Tyler C. R. Sexual disruption in a second species of wild cyprinid fish (the gudgeon, Gobio gobio) in United Kingdom freshwaters. Environ Toxicol Chem. 2001 Dec;20(12):2841–2847. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES