Skip to main content
. 2025 Sep 8;31(5):440–455. doi: 10.4274/dir.2025.243182

Table 5. Item-wise correlation between reporting status and online publication year.

CLAIM items1

Pre- and post-publication of CLAIM

 Post-publication of CLAIM

rho

P

flag2

rho

P

flag2

Item#1 (AI methodology and technology type in title)

−0.097

0.046

*

−0.074

0.281

-

Item#2 (Structured study summary)

0.034

0.491

-

0.022

0.748

-

Item#3 (Background and clinical role of AI)

−0.038

0.435

-

0.071

0.300

Item#4 (Study objectives and hypotheses)

−0.131

0.007

**

−0.162

0.018

*

Item#5 (Prospective or retrospective design)

0.092

0.060

-

0.017

0.806

-

Item#6 (Study goal, e.g., model creation, feasibility)

−0.098

0.045

*

0.046

0.502

-

Item#7 (Data sources)

0.024

0.626

-

−0.009

0.899

-

Item#8 (Eligibility criteria, e.g., inclusion/exclusion)

−0.055

0.261

-

−0.014

0.842

-

Item#9 (Data pre-processing)

−0.086

0.078

-

−0.217

0.001

**

Item#10 (Data subset selection, if applicable)

0.191

<0.001

***

0.225

<0.001

***

Item#11 (Definitions of data elements)

−0.220

<0.001

***

−0.057

0.405

-

Item#12 (De-identification methods)

0.099

0.042

*

0.068

0.322

-

Item#13 (Handling of missing data)

0.134

0.006

**

0.110

0.110

-

Item#14 (Ground truth definition)

−0.057

0.240

-

−0.137

0.045

*

Item#15 (Rationale for reference standard)

−0.205

<0.001

***

−0.069

0.312

-

Item#16 (Source and qualifications of annotators)

−0.078

0.111

-

−0.153

0.025

*

Item#17 (Annotation tools)

−0.244

<0.001

***

−0.092

0.180

-

Item#18 [Variability assessment (inter/intra-rater)]

−0.211

<0.001

***

−0.121

0.078

-

Item#19 (Sample size determination)

0.220

<0.001

***

0.250

<0.001

***

Item#20 (Data partitioning method)

0.140

0.004

**

−0.112

0.102

-

Item#21 (Partition level, e.g., image, patient)

0.345

<0.001

***

0.116

0.091

-

Item#22 [Model description (inputs, outputs, layers)]

0.036

0.462

-

−0.109

0.110

-

Item#23 (Software and frameworks used)

−0.127

0.009

**

−0.134

0.050

-

Item#24 (Model parameter initialization)

−0.124

0.011

*

−0.176

0.010

*

Item#25 (Training details, e.g., augmentation, hyperparameters)

0.141

0.004

**

−0.123

0.073

-

Item#26 (Final model selection)

−0.057

0.246

-

−0.117

0.088

-

Item#27 (Ensemble techniques, if applicable)

0.186

<0.001

***

0.167

0.014

*

Item#28 (Model performance metrics)

−0.076

0.119

-

−0.129

0.060

-

Item#29 (Statistical significance and uncertainty)

0.026

0.594

-

0.060

0.386

-

Item#30 (Robustness/sensitivity analysis)

0.022

0.656

-

0.015

0.831

-

Item#31 (Explainability methods, e.g., saliency maps)

0.222

<0.001

***

−0.002

0.982

-

Item#32 (External validation/testing)

0.009

0.846

-

0.098

0.152

-

Item#33 (Participant flow diagram)

0.356

<0.001

***

0.202

0.003

**

Item#34 (Demographic/clinical characteristics by partition)

0.195

<0.001

***

0.126

0.065

-

Item#35 (Performance metrics for optimal model)

−0.020

0.684

-

−0.097

0.158

-

Item#36 (Diagnostic accuracy estimates)

0.101

0.039

*

0.172

0.012

*

Item#37 (Failure analysis)

0.075

0.125

-

−0.009

0.892

-

Item#38 [Study limitations (bias, uncertainty, generalizability)]

0.173

<0.001

***

0.107

0.119

-

Item#39 (Practice implications and clinical role)

−0.270

<0.001

***

−0.298

<0.001

***

Item#40 (Registration number and registry name)

−0.141

0.004

**

−0.093

0.174

-

Item#41 (Study protocol access)

0.160

0.001

**

−0.075

0.275

-

Item#42 (Funding sources and funder roles)

0.207

<0.001

***

0.092

0.178

-

1 Note that item names have been abbreviated; 2* P < 0.05; ** P < 0.01; *** P < 0.001. CLAIM, Checklist for Artificial Intelligence in Medical Imaging.