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Genome-wide comparisons between enteric bacteria yield large
sets of conserved putative regulatory sites on a gene-by-gene basis
that need to be clustered into regulons. Using the assumption that
regulatory sites can be represented as samples from weight ma-
trices (WMs), we derive a unique probability distribution for
assignments of sites into clusters. Our algorithm, ‘‘PROCSE’’ (prob-
abilistic clustering of sequences), uses Monte Carlo sampling of this
distribution to partition and align thousands of short DNA se-
quences into clusters. The algorithm internally determines the
number of clusters from the data and assigns significance to the
resulting clusters. We place theoretical limits on the ability of any
algorithm to correctly cluster sequences drawn from WMs when
these WMs are unknown. Our analysis suggests that the set of all
putative sites for a single genome (e.g., Escherichia coli) is largely
inadequate for clustering. When sites from different genomes are
combined and all the homologous sites from the various species
are used as a block, clustering becomes feasible. We predict 50–100
new regulons as well as many new members of existing regulons,
potentially doubling the number of known regulatory sites in
E. coli.

New microbial genomes are sequenced almost daily, and the
first step in their annotation is the elucidation of their

protein-coding regions. The noncoding regions of the genome
can provide clues about gene regulation, because they contain
various regulatory elements. These elements generally are much
smaller and more variable than typical coding regions and thus
harder to identify. Computational methods are needed, because
even for Escherichia coli there are only 60–80 genes for which
binding sites and regulated genes are known (1, 2), whereas
protein sequence homology suggests there are �300 DNA-
binding proteins (3). Binding sites have been identified experi-
mentally in only 300 of the 2,400 regulatory regions of E. coli (2).
For important pathogens such as Vibrio cholerae, Yersinia pestis,
or Mycobacterium tuberculosis very little is known about gene
regulation from direct experimentation.

Computational strategies for the discovery of regulatory sites
began with algorithms (4–6) that identified sets of similar
sequences in the regulatory regions of functionally related
groups of genes. More recently, algorithms were proposed to
identify repetitive patterns within an entire genome (7). Here we
develop methods for partitioning a large set of putative regula-
tory sites into clusters based on sequence similarity, with the goal
of identifying regulons. That is, we aim to partition the set of sites
such that each cluster corresponds to those targeted by the same
transcription factor (TF).

Many authors have noted the potential of interspecies com-
parisons to elucidate regulatory motifs (e.g., ref. 8). Generally,
a group of functionally related genes in bacteria is pooled to
extract common sites within the regulatory regions of these genes
(e.g., refs. 9 and 10). More recent studies (11, 12) have shown
that when upstream regions of orthologous genes from several
suitably related species are compared at once, there is sufficient
signal for regulatory sites to be inferred on a gene-by-gene basis,
yielding thousands of potentially new sites. These sites form the
data sets on which our algorithm operates.

Previous algorithms that fit weight matrices (WMs) cannot
process genome scale data representing sites from hundreds of TFs
simultaneously. Other schemes (7), not based on WM representa-
tions of regulatory sites, are not well suited for processing sites that
were inferred from interspecies comparison. Our algorithm parti-
tions the entire set of sites at once, infers the number of clusters
internally, and assigns probabilities to all partitions of sequences
into clusters. Within this framework, we also derive theoretical
limits on the clusterability of sets of regulatory sites.

A set of sites, sampled from a set of unknown WMs, is said to
be clusterable if it is possible to infer which sites were sampled
from the same WM. If the WMs from which the sites were
sampled are known, we have the much simpler classification
problem: determining which sites were sampled from which
WM. It is important to realize that the cell is performing a
classification task because it knows the WMs of the TFs, i.e. the
chemistry of the DNA–protein interaction automatically assigns
a binding energy to each site just as a WM assigns a score to each
site. However, since we cannot infer binding specificities from a
TF’s protein sequence, we face the much harder clustering task.
Our theoretical arguments and the available data for E. coli in
fact suggest that the set of all regulatory sites in the E. coli
genome is unclusterable by itself. However, we also show how
this problem can be circumvented by taking into account infor-
mation from interspecies comparison.

Model
Protein binding sites in bacterial genomes are commonly de-
scribed by a WM, w�

i , which gives the probabilities of finding base
� at position i of the binding site (13). The probabilities in
different columns i are assumed independent, which accords well
with existing compilations (1). Motif-finding algorithms (4–6)
score the quality of an alignment of putative binding sites by the
information score I of its (estimated) WM,

I � �
i ,�

w�
i log�w�

i �b��, [1]

where b� is the background frequency of base �, and the w�
i are

the WM probabilities estimated from the sequences in the
alignment. The rationale for this scoring function is that the
probability of an n sequence alignment with frequencies w�

i

arising by chance from n independent samples of the background
distribution of bases b� is given by P � e�nI.

Instead of distinguishing sequence motifs for a single TF
against a background distribution, our task is to cluster a set of
binding sites of an unknown number of different TFs, i.e. a set
of sequences sampled from an unknown number of unspecified
WMs. To this end, we consider all ways of partitioning our data
set into clusters and assign a probability to each partition. Fig.
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1 depicts, schematically, two ways of partitioning a set of
sequences into clusters. We will assign probabilities to all such
partitions. The probability of a partition is the product of the
probabilities, for each cluster, that all sequences within the
cluster arose from a common WM.

To calculate these probabilities, consider first the conditional
probability P(S�w) that a set of n length l sequences S was drawn
from a given WM w,

p�S�w� � �
s � S

�
i � 1

l

wsi

i , [2]

where si is the letter at position i in sequence s. The probability
P(S) that all sequences in S came from some w can be obtained
by integrating over all allowed w, namely over the simplex ��w�

i

� 1 for each position i. Lacking any knowledge regarding w, we
use a uniform prior over the simplex. We obtain

P�S� � �P�S�w�dw � � n � 3
3 �� l �

i � 1

l �
�

n�
i !

n!
, [3]

where n�
i is the number of occurrences of base � in column i. The

last factor in Eq. 3 is just the inverse of the multinomial factor that
counts the number of ways of constructing a specific vector (na, nc,
ng, nt) from n bases, which bears an obvious relation to Eq. 1. High
probabilities thus are given to vectors, which can be realized in the
least number of ways. The factor ( 3

n�3) counts the number of distinct
vectors (na, nc, ng, nt) that can be obtained from n samples.

We now can define for any partition C of a data set of
sequences D into clusters Sc the likelihood P(D�C) that all
sequences in each Sc were drawn from a single WM: P(D�C) �
	c P(Sc), with P(Sc) given by Eq. 3. Then the posterior proba-
bility P(C�D) for partition C given the data D is

P�C�D� �
P�D�C���C��C
 P�D�C
���C
�

, [4]

where �(C) is the prior distribution over partitions, which we will
assume to be uniform.

Consider the simplest example of a data set of only two sequences
with matching bases in b of their l positions. We have P � 2b(1�20)l

for the probability that the sequences came from the same WM,
whereas P � (1�16)l for the probability that they came from
different WMs. P(C�D) thus will prefer to either cluster or separate
the two sequences depending on b. In general, the probability
distribution P(C�D) will prefer partitions in which similar sequences
are coclustered. The state space of all partitions (the number of
which grows nearly as rapidly as n!; ref. 14) acts as an ‘‘entropy,’’
which opposes (stable) clustering of similar sequences.

The probability distribution Eq. 4 allows us to calculate any
statistic of interest by summing over the appropriate partitions

C. For instance, to calculate the probability that the data set
separates into n clusters, one sums P(C�D) over all partitions that
contain n clusters. Analogously, we can calculate the probability
that any particular subset of sequences forms a cluster by
summing P(C�D) over all partitions in which this occurs. Note
that our clustering framework thus allows for direct calculations
of these quantities. In the implementation section below we
describe how we sample P(C�D) and identify significant clusters
by finding subsets of sequences that cluster consistently.

Generalizations to data arising from WMs of different lengths
and sequences that are not aligned consistently are straightfor-
ward and considered below. It is also trivial to incorporate prior
information on the number of clusters (e.g., that it should equal
the number of TFs).

Classifiability vs. Clusterability
Correct regulation of gene expression requires that TFs should
bind preferentially to their own sites. Associating TFs with WMs,
P(s�w) commonly is taken to be the probability that w binds to
s. Correct regulation thus implies that for a sample s from w, we
have that P(s�w) � P(s�w
) for all other TFs w
 � w, which we
call a classification task. Formally, we are given a set of WMs and
a set of sequences sampled from them and assign each sequence
s to the WM from the set that maximizes P(s�w). We define the
data to be classifiable when, in at least half of the cases, the WM
w that maximizes P(s�w) is the WM from which s was sampled.
As mentioned in the Introduction, classification is much simpler
than clustering a set of sites in the absence of knowledge of the
set of WMs from which they were sampled.

To quantify clusterability, assume we are clustering nG se-
quences that were obtained by sampling n times from each of G
different WMs. For each of these WMs we can calculate the
probability that m of its n samples cocluster by summing the
probabilities P(C�D) over all partitions C in which m, and no
more than m, samples of w occur together in any of the clusters.
We will define the set to be ‘‘clusterable’’ if for more than half
of the G WMs the average of m, 
m� � n�2.

We have performed analytical and numerical calculations that
identify under what conditions a data set is classifiable and clus-
terable. This theory is beyond the scope of this paper and will be
reported elsewhere. The results are summarized in Fig. 2. Given the
information score I (Eq. 1) of a WM, the fraction of the space of
4l sequences filled by the binding sites for this WM is e�I. One thus
can regard I as a measure of the specificity of a WM. Fig. 2 shows
the minimal WM specificity necessary to cluster (solid lines) or
classify (dashed line) as a function of the number of WMs G and

Fig. 1. Two ways of partitioning the same set of sequences into clusters. The
rectangle schematically represents the space of all possible DNA sequences of
some particular length l. The dots denote the sequences in the data set, and
the circles indicate which sequences are partitioned together into clusters.

Fig. 2. The critical information score I for clusterability (solid lines) or classi-
fiability (dashed line) as a function of the number of clusters G (shown on a log
scale). The solid lines correspond, from top to bottom, to sets of n � 3, 5, 10,
and 15 samples per cluster. The WM length is l � 27.
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the number of samples n per WM. Fig. 2 shows that exp(�I) � 1�G
for classification and exp(�I) � 1�G2 for clustering a set of n � 3
binding sites, with fractional exponents in between these extremes.
Thus, all G WMs together consume a fixed fraction of sequence
space at the classification threshold (independent of G), while it
decreases as a function of G at the clusterability threshold. More-
over, there is a significant gap between the requirements for
classification vs. clustering even for large numbers of samples. Thus,
clustering is impossible for data sets close to the classification
threshold. The results presented below suggest that the collection of
E. coli binding sites may well be in this unclusterable regime, where
few regulons can be inferred correctly.

However, comparative genomic information can salvage this
situation. The putative binding sites of our data sets were extracted
by finding conserved sequences upstream of orthologous genes of
different bacteria (see below). Such conserved sequence sets are
likely to contain binding sites for the same TF and should be
clustered together. Therefore, we can reduce the size of the state
space significantly by preclustering these conserved sites into so-
called mini-WMs, and instead of clustering single sequences we will
be clustering these mini-WMs with the same probabilities shown in
Eq. 3, which improves clusterability dramatically.

Implementation
We have implemented a Monte Carlo random walk to sample the
distribution P(C�D). At every ‘‘time step’’ we choose a mini-WM at
random and consider reassigning it to a randomly chosen cluster (or
empty box). These moves are accepted according to the Metropol-
is–Hastings scheme (15): moves that increase the probability
P(C�D) are always accepted, and moves that lower P(C�D) are
accepted with probability P(C
�D)�P(C�D). Fig. 3 shows an example
of a move from a partition C to a partition C
. This sampling scheme
thus generates ‘‘dynamic’’ clusters, the membership of which fluc-
tuates over time. Clusters may evaporate altogether, and new
clusters may form when a pair of mini-WMs is moved together. We
wish to identify ‘‘significant’’ clusters by finding sets of mini-WMs
that are grouped together persistently during the Monte Carlo
sampling. Ideally, we would find a set of clusters, each with stable
‘‘core’’ members that are present at all times, while the remaining
mini-WMs move about between different clusters. Reality unfor-
tunately is more complicated. One finds clusters that are drifting
constantly such that their membership is uncorrelated on long time
scales. Other clusters, with stable membership, may evaporate and
reform many times. Although we can sample P(C�D) easily to obtain
significance measures for any given ‘‘candidate cluster,’’ the rich
dynamics of drifting, fusing, and evaporating clusters makes it
nontrivial to identify good candidate clusters.

We have experimented with a number of schemes for identifying
candidate clusters (see supporting information, which is published
on the PNAS website, www.pnas.org). One approach is to search for
the maximum likelihood (ML) partition that maximizes Eq. 4, which
can be done by simulated annealing: we raise P(D�C) to the power
�, increasing � over time (in practice � � 3 is large enough). The
ML partition gives us a set of candidate clusters. The significance
of the ML clusters then are tested by sampling P(C�D). Fig. 4

illustrates this procedure. For each partition encountered during
the sampling, we define the number of coclustering members of an
ML cluster as the maximum number of mini-WMs from the ML
cluster that co-occur in a single cluster (see Fig. 4). In this way we
measure, for each ML cluster, the probabilities p(k) that k of its
members cocluster. The mean size of the cluster thus is �k k p(k).
Finally, we calculate the minimal length interval [kmin, kmax] for
which �k�kmin

kmax p(k) � 0.95. All clusters for which kmin � 2 are deemed
significant.

This method is computationally prohibitive for large data sets
(because we cannot run long enough to converge all cluster
statistics). For larger data sets we measure, using several Monte
Carlo random walks, the probability that each pair of mini-WMs
coclusters (note that these pair statistics cannot be calculated in
terms of the sequences in the pair of mini-WMs themselves; they
depend on the full data set). We then construct a graph in which
nodes correspond to mini-WMs, and edges between mini-WMs i
and j exist if and only if their coclustering probability pij � 1⁄2.
Candidate clusters now are given by the connected components of
this graph. The pairwise statistics are then processed further to
obtain probabilistic cluster membership, which yields for each
mini-WM i the probabilities pj

i that mini-WM i belongs to cluster j
(see supporting information). We also calculate, for each cluster,
the probability distribution p(k) of k of its members coclustering.
Cluster significance is judged from p(k) as described above. For-
tunately, there is substantial agreement on the significant clusters
among these ways of extracting significant clusters from P(C�D).

After we have inferred the clusters and their members, we can
estimate a WM for each cluster. We then classify all mini-WMs
in the full data set in terms of these cluster WMs. Finally, we
search for additional matching motifs to the cluster WMs in all
the regulatory regions of the E. coli genome. Details for all these
procedures are described in the supporting information.

Data Sets
Our primary data sets (11, 12) consist of alignments of relatively
short sequences, i.e. typically 15–25 bases, that where extracted
from upstream regions of orthologous genes in different pro-
karyotic genomes. Data set (11) uses the genomes of E. coli,
Actinobacillus actinomycetemcomitans, Haemophilus influenzae,
Pseudomonas aeruginosa, Shewanella putrefaciens, Salmonella
typhimurium, Thiobacillus ferrooxidans, V. cholerae, and Y. pestis.
Data set (12) uses E. coli, Klebsiella pneumoniae, S. typhimurium,
V. cholerae, and Y. pestis. An example alignment is shown in Fig.
5. The available evidence suggests that these alignments either
include or substantially overlap a set of binding sites for a TF (or
another kind of regulatory site). Our algorithm will have to
decide which stretch of bases in each alignment corresponds to
the regulatory site. Known binding sites (1) are between 11 and
50 bases long with a mean of 24.5 and a standard deviation of just
under 10. We will assume that all binding sites are exactly 27
bases long, compromising between diluting the signal in the small

Fig. 3. Monte Carlo sampling of partitions: example of a move from partition
C to partition C
. The dots are sequences, and the circles delineate the clusters. Fig. 4. The ML partition obtained by annealing is indicated by the thin, dashed

circles and the fill patterns of the dots. The thick lines show an alternative
partition that may arise during sampling. The number of coclustering members
in this partition are shown on the right for each of the ML clusters.
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binding sites and missing some of the signal in long binding sites.
We symmetrically expand the alignments in our data set to
length 32, padding bases from the genomes (see Fig. 5). We
would like to treat these sequences as independent samples of a
single WM, but for closely related species this assumption
probably is untenable. For alignments from data set (11) we
therefore replace sites from the triplet E. coli, Y. pestis, and S.
typhimurium, and from the duplet H. influenzae and A. actino-
mycetemcomitans by their respective consensi. For the data set
(12) we only replace the triplet E. coli, K. pneumoniae, and S.
typhimurium by their consensus. The mini-WMs thus obtained
are the objects that our algorithm clusters. Finally, every time the
Monte Carlo algorithm reassigns a mini-WM to a cluster, it
samples over the six different ways of picking a length 27 window
out of the length 32 alignment and over both strands (see
supporting information).

Before clustering these primary data sets we tested the
algorithm on a set of experimentally determined TF binding sites
in E. coli that was collected in ref. 1. We again extended (or
cropped) these sequences symmetrically to length 32. After
excluding � factor sites and sites that overlap one another by 27
or more bases, there are 397 binding sites representing 53 TFs
remaining in this test set. See the supporting information for
comments on the preprocessing of this and our other data sets.

For data set (11) we removed all alignments that overlap
known binding sites or repetitive elements and then took the top
2,000 nonoverlapping alignments ordered by their score. For
data set (12) we also took the top 2,000 nonoverlapping sites
based on significance, but we left sites overlapping known
binding sites in this set. Finally, in order to separate new regulons
from new sites for TFs with sites in the collection (1), we aligned
all known E. coli sites for each TF into its own mini-WM and
added these 56 mini-WMs to sets (11) and (12) [3 out of the 53
TFs (argR, metJ, and phoB) have two different types of sites,
which we align separately into mini-WMs]. Both these sets thus
contain 2,056 mini-WMs.

We created an additional test set consisting of the 397 known
binding sites from ref. 1 and the E. coli sequences of the top 2,000
unannotated mini-WMs from (11). As described below, this test
verified our prediction that by embedding the 397 known sites in
a larger set of sites, many clusters will fail to be inferred correctly.

Results
We used the test set of 397 known binding sites in several ways. First,
we sampled P(C�D) and measured, for each factor, how well its sites
cluster. That is, we measured the coclustering distribution p(k) for
each TF. Using the significance threshold described above, we
found significant clusters for 24 of the 53 TFs. Twenty two TFs have
three or fewer sites in the test set, and with the exception of trpR
their sites did not cluster significantly. As a better test of our
algorithm, we compared the clusters inferred from annealing this

data set with the site annotation. We performed two annealing runs
to identify an ML partition and then performed sampling runs to
test the significance of these ML clusters. We found that, in general,
there is good agreement between the annotation and the clusters
inferred by annealing. For 17 of the 24 TFs that form significant
clusters there was an analogous significant cluster obtained by the
annealing. The full results are in supporting information. We have
found also that the likelihood P(C�D) for the partition obtained in
all annealing runs is significantly higher than that obtained when the
sites are partitioned according to their annotation. Thus we feel that
the clustering for this data set cannot be improved within our
scoring scheme. In short, our algorithm recovers almost half of all
regulons for which binding sites are known and the large majority
of regulons for which there are more than three sites known.

We sampled P(C�D) for the 2,397-site test set and found that, as
predicted, many clusters are lost (only 9 of 24 significant clusters
remain). Several of those that remain where reinforced by the
presence of additional unannotated sites in the supplemental set of
2,000. (Using more samples improves clusterability as we have seen
in Classifiability vs. Clusterability.) For this larger data set, the total
number of clusters fluctuates around 350 during the run, but
only �5% of them are significant, which suggests that most E. coli
binding sites are in the unclusterable regime, and that comparative
genomic information is essential to effectively cluster. We also
performed simulations with ‘‘surrogate’’ data sets that support this
claim further. For each cluster of known binding sites, we calculated
the information score I of its WM and created four random WMs
with equal I. By drawing samples from each of these, we ‘‘scaled up’’
the set of known binding sites and clusters by a factor of 5 to
correspond to the estimated number of TFs in E. coli. In sampling
P(C�D) for this set, we found that less than 10% of the clusters are
inferred correctly.

For the larger data sets from (11) and (12), which are our main
interest, repeated annealing and sampling runs indicated that both
the annealed state and the significance statistics are not converged
fully within our running times (1010 steps, taking a week on a
workstation per run). We therefore extracted significant clusters via
pair statistics as described above, which did converge and allowed
us to assign error bars to all pair statistics. For the data set (11) there
were 365 � 5 clusters on average, and the connectivity graph gave
274 components containing 1,139 out of 2,056 mini-WMs. Thus,
about half of the data set clusters stably, whereas the other half
moves in and out of the �100 unstable clusters. There were 115
significant clusters comprising 645 mini-WMs. Of the 115 signifi-
cant clusters, 21 contained as one of its member mini-WMs the
alignment of a set of known binding sites for a TF from ref. 1. These
clusters thus contain new sites for known regulons. The other 94
clusters correspond to new putative regulons, some examples of
which are described below.

It is interesting to calculate the cluster information scores, I,
to compute the fractions, e�I, of sequence space occupied by our
clusters. Summing these volumes, we find that �1% of the space
is filled by the top 45 clusters, the top 80 clusters fill 10% of the
space, and all our 115 significant clusters fill 39% of the space,
which again supports the idea that the set of all WMs is close to
the classification boundary; their binding sites fill almost the
entire sequence space.

For the data set (12) there are 275 � 4 clusters on average
during the sampling. The connectivity graph has 176 clusters
containing 726 mini-WMs. There were 65 significant clusters
(containing 398 mini-WMs), of which 25 correspond to known
regulons. With respect to the sequence space volume filled by the
WMs of these clusters, 1% of the space is filled by the first 30
clusters, 50 clusters fill 10% of the space, and the full set of 65
WMs fills �50% of the sequence space.

Fig. 5. Operations on the data sets. Starting from an alignment of variable
length, we extend the alignment to length 32 by padding bases from the
genome and then replace sequences of closely related species by their con-
sensus. This yields so-called mini-WMs, which are the objects that our algo-
rithm clusters. When moved between clusters, a window of length 27 is
sampled from the alignment.
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Examples
Table 1 contains a synopsis of some of predicted new regulons we
have examined in detail from the data set 11. Primary cluster
membership is noted along with additional sites that can be found
by scanning the cluster WM over the full data set and all regulatory
regions of E. coli. The complete lists are on our web site (www.
physics.rockefeller.edu��erik�website.html).

Our thiamin cluster is an example of a predicted regulon that
recently has been confirmed experimentally. A comprehensive
review of thiamin biosynthesis in prokaryotes (16) places the
genes from the three operons of our thiamin cluster (thiBPQ is
also called tbpA�yabJK) into a single pathway, together with the
four single genes: thiL, thiK, dxs (yajP), and thiI (yajK). A recent
paper (17) shows that the three thiamin operons share a common
RNA stem–loop motif that is responsible for posttranscriptional
regulation. It is precisely a portion of this motif that we cluster.
A fragment of this structure also occurs just upstream of
translation start in thiL. For the remaining genes, thiK, dxs, and
thiI, there are no putative sites in data set (11).

Besides the main gluconate metabolism pathway, a second
pathway that utilizes input from the catabolism of L-idonic acid has
been reported recently (18) and corresponds to our second cluster.
The first two operons (idnK and idnDOTR) code for the enzymes
that import L-idonate and convert it to 6-P-gluconate. The operon
gntKU contains a gluconokinase, which catalyzes the same reaction
as the idnK protein, and a low-affinity gluconate permease. b2740
is a gene of unknown function that belongs to the family of
gluconate transporters. Finally, gntT is a high-affinity gluconate
permease. Additional sites were found upstream of the edd�eda
operon that encode the key enzymes of the Entner–Doudoroff
pathway (19). Ref. 18 suggests that idnR both up-regulates the
L-idonate catabolism genes and represses gntKU and gntT when
growing on L-idonate, suggesting that our sites may bind indR.
However, there are two sites upstream of gntT that are annotated
as gntR sites (20), which are also part of our cluster.

The pathway for ribonucleotide reduction to deoxyribonucleo-
tides is pictured on page 591 of ref. 21 and includes the first two
operons of our like-named cluster. We did not find sites in the
regulatory regions of the other two genes in this pathway (ndk, dcd).
Scanning of the genome with the WM inferred from the nrdAB and
nrdDG sites reveals an additional three (weaker) sites upstream of
the nrdHIEF operon. The nrdEF genes are annotated as a cryptic
ribonucleotide reductase. The regulation of our two primary oper-
ons (nrdAB and nrdDG) is known to be complex and includes an fnr
site upstream of nrdD (which we correctly clustered with other fnr

sites) and additional fis, dnaA, and unattributed sites upstream of
nrdA (22). The nrdA site in our cluster is located downstream of
transcription start. Because nrdA is down-regulated during anaer-
obiosis and nrdD is essential for anaerobic growth, we would guess
that our sites are involved in the switch.

The estimated WM of cluster 5 has a prominent inverted
repeat sequence as its consensus (AAAAacCC***TT***GGG-
GgTTTTTT) and has over 20 matches in the genome. These
sites may correspond to an RNA secondary structure, possibly
involved in attenuation. There is no clear predominant func-
tional theme to the genes in our cluster 5. Noteworthy are sites
upstream of the arsenic resistance operon (arsRBC), the crr
regulator of a multidrug efflux pump, and the ydnM (zntR)
regulator for Pb(II), Cd(II), and Zn(II) eff lux. Also, two genes
involved in DNA repair occur (MutM and lig).

The sites in cluster 15 occur upstream of genes whose proteins are
involved in RNA modification (thdF and pnp), recombination
(recQ and himD), and translation (tsf). More strikingly, 6 of 7 of
these sites occur downstream of genes coding for ribosomal protein
subunits and one RNase. For five of these genes, there is evidence
(see the ecocyc database, ecocyc.org:1555�server.html�) that our
site falls within a transcription unit, i.e. that the genes upstream and
downstream of our site are cotranscribed. It seems likely that these
sites are involved in either attenuation or translational regulation.

E. coli has a rich repertory of respiratory chains that are built
from a variety of electron donors and acceptors (see ref. 21, page
218). One of our clusters (16) involves two homologous cyto-
chrome operons cydAB and appCB (cyxAB), which transfer
electrons to oxygen and are active mainly during anaerobic
conditions. The torACD operon (divergently transcribed with its
regulator torR) transfers electrons to trimethylamine N-oxide.
There is a third cytochrome complex, cyoABCD, with different
specificity that is not linked to this cluster. Other operons in this
cluster such as livKHMGF, which is involved in amino acid
import, and ansB, which catalyzes asparagine to aspartate con-
version, seem unrelated but are divergently transcribed with
genes of unknown function. However, refs. 23 and 21 (page 366)
suggest that ansB also can provide fumarate as a terminal
electron acceptor. AnsB is up-regulated strongly during anaer-
obic conditions and has known crp and fnr sites. The ansB site
in our cluster is different from these sites.

Cluster number 17 corresponds to the fatty acid biosynthesis
regulon with TF yijC (fabR) that was identified in ref. 11. Our
cluster contains the sites they found upstream of fabA and b2899.
Additionally, we found WM matches upstream of the related

Table 1. Sample clusters from data set 11

Cluster name Rank Defining operons

Thiamin biosynthesis 0 thiCEFGH tpbA�yabKJ thiMD thiL
gntR�idnR regulon 1 idnK,idnDOTR gntKU gntT b2740 edd�eda
Elongation factor 2 tufB
Ribonucleotide reductase 3 nrdAB nrdDG nrdHIEF
? 4 coaA tgt�yajCD�secDF yegQ b3975 tpr yeeO
Stem–loop�attenuator repair ? 5 yhbc�nusA�infB mutM arsRBC yhdNM nadA�pnuC lig ptsHI�crr rbfA�truB�rpsO
ntrC regulon 11 glnK�amtB cmk�rpsA glnALG glnHPQ narGHJI hisJQMP
Ribosomal protein attenuation 15 thdF fabF recQ tsf pnp pyrE himD
Anaerobic oxidation 16 cydAB appCB yhhK,livKHMGF torCAD,torR ansB�yggM ybbQ yiiE
Fatty acid biosynthesis 17 fabA b2899(yqfA) fabB fabHDG
Cell envelope replication ? 25 pcnB�folK pssA dksA�yadB yaeS mreCD�yhdE�cafA sanA cmk�rpsA
Alkaline phosphatase peptidoglycan 26 yaiB�phoA�psiF, ddlA dnaB�alr creABCD iap avtA
Transport 37 abc,yaeD cadBA araFGH,yecI celABCDF citAB,citCDEF agaBCD tauABCD
fruR regulon 71 fruR fruBKA epd yggR
Fe-S radicals 85 metK,yqgD ftn pykA yheA�bfr

The cluster rank is by WM information score. The defining operons come in three categories: those with member sites in the data set
on which the algorithm was run (bold), those with sites in data set (11) that match the WM (normal font), and those that were found
by scanning the regulatory regions of E. coli (italics). Multiple genes within an operon are separated by a �or by multiple capitals at the
end of the gene name. Operons separated by a comma indicate that the site fell between divergently transcribed genes.
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genes fabB and fabHDG. Other operons with lower quality sites
in the cluster include the mglBAC operon (methyl-galactoside
transport), clpX (component of clpP serine protease), and the
putative peptidase b2324.

We are unable to guess the functional role of the binding sites
clustered in cluster number 25. Some of the genes have func-
tionalities related to the cell envelope and membrane (pssA,
yaeS, mreCD, and sanA), and some seem involved in replication
(dskA, cafE). However, these functions seem rather diverse.

For cluster 26, we find sites upstream of genes involved in
peptidoglycan biosynthesis (alr, ddlA, avtA, and mrcB) and
genes that are known to be regulated in response to phosphate
starvation (creABC, iap, and phoA�psiF). In particular, alkaline
phosphatase (phoA) is upregulated more than 1,000-fold and
accounts for as much as 6% of the protein content of the cell
during phosphate starvation (see ref. 21, page 1,361). Because
alkaline phosphatase is active in the periplasm, it seems con-
ceivable that peptidoglycan synthesis is down-regulated when
phoA is expressed at such high levels.

Additional clusters with obvious common functionality include
cluster 85 for Fe-S radical synthesis (24) and the large cluster 37,
which contains several phosphotransferase system and other trans-
port systems. Cluster 71 contains sites that overlap binding sites for
the fructose repressor fruR. These sites were clustered separately
from the known fruR sites because of a systematic shift, larger than
the range our algorithm scans, between how they were given in data
set (11) and the annotated fruR sites. Similarly, cluster 11 contains
sites that overlap binding sites for the nitrogen fixation regulator
ntrC (glnG).

Apart from the 94 putative regulons, our web site has an
additional 270 sites that cluster with WMs of known TFs.
Summing their membership probabilities, this corresponds to an
expected 135 binding sites. The web site also provides informa-
tion for each E. coli gene separately: inferred regulatory sites
upstream of the gene and the cluster memberships of these sites.

The clusters inferred from data set (12) are also on our web
site. We have not evaluated their functional significance yet, but
some of them correspond to clusters that we also found in the
data of data set (11), e.g., the thiamin cluster reappears.

Discussion
We introduced a new inference procedure for probabilistically
partitioning a set of DNA sequences into clusters. Currently, the
algorithm assumes all WMs to be of a fixed length, but prior
information about site lengths, their dimeric nature, and the length
of spacers between dimeric sites could be included easily. One also
could extend the hypothesis space on which the algorithm operates;
one may assume that only some fraction, rather than all, of the
sequences are WM samples, whereas the rest should described by
a background model, which would, for instance, be appropriate for
analyzing entire upstream regions. In all these generalizations, the
algorithm would still assign probabilities to sets of sequences
belonging to a single TF. This essentially Bayesian approach should

be contrasted with approaches (e.g., refs. 4 and 7), in which
‘‘promising’’ motifs are selected based on how unlikely it is for them
to occur under some null hypothesis of randomness.

By applying our algorithm to data sets (11, 12) of putative
regulatory sites extracted from enteric bacteria, we predicted
�100 new regulons in E. coli, containing �500 binding sites, and
�150 binding sites for known TFs. The functionality of many of
the predicted regulons is supported by the fact that their sites are
found upstream of genes that are clearly related functionally.
Even if there is no common theme in the annotation of the genes
controlled by the sites, our significance measures suggest that a
large fraction of the clusters is functional; the data sets contain
only conserved sites upstream of orthologous genes in different
organisms, and a highly significant association of groups of such
sites was found. We note that our set is a considerable augmen-
tation of the �400 non-� sites that are known experimentally.
Analysis of some of our clusters shows that included in our
predicted regulons in addition to TF binding sites are RNA stems
controlling translation and even termination motifs.

The clusters and sites resulting from our genome-wide analysis
of regulatory motifs allows for a more quantitative evaluation of
the global structure of regulatory networks in bacteria. The
regulatory network is often imagined as a rather loosely coupled
collection of ‘‘modules’’ where each regulon controls a set of
genes with closely linked functionality (although of course many
exceptions exist such as the structural TFs fis, ihf, etc.). Our
predicted regulons are often much less orderly. In several cases,
some but not all genes of a well studied pathway entered the
regulon. In other cases, a regulon contains sets of sites for genes
of two or three clearly distinct functionalities for which no
regulatory connection is known. Our overall impression is of a
more haphazard regulatory network than traditionally imagined.

Finally, we have emphasized the distinction between classifying
and clustering a set of binding sites. We have argued that the TFs
of a cell are essentially solving a classification task, and that inferring
regulons from the set of binding sites of a single genome may well
be impossible in principle. There are also evolutionary arguments
that support this claim. Like any piece of DNA, binding sites are
subject to random mutations. The more specific binding sites are,
the more likely they are to be disrupted by mutations. Evolution
thus will naturally drive TFs and their binding sites to become as
unspecific as possible (25, 26) within the constraints set by their
function. That is, evolution will drive the set of binding sites toward
the ‘‘classification threshold’’ where they become unclusterable.
The situation is reminiscent of the situation in communication
theory, where optimally coded messages look entirely random to
receivers that are not in possession of the code. Information from
comparative genomics thus is essential for the inference of regulons
from genomic data, and as the number of sequenced genomes
grows, so will our algorithm’s ability to discover new regulons.
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