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Based on the nonlinear system theory, we introduce previously
undescribed dependence measures for stationary causal processes.
Our physical and predictive dependence measures quantify the
degree of dependence of outputs on inputs in physical systems.
The proposed dependence measures provide a natural framework
for a limit theory for stationary processes. In particular, under
conditions with quite simple forms, we present limit theorems for
partial sums, empirical processes, and kernel density estimates. The
conditions are mild and easily verifiable because they are directly
related to the data-generating mechanisms.
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Let �i, i � �, be independent and identically distributed (iid)
random variables and g be a measurable function such that

Xi � g� . . . , �i�1, �i�, [1]

is a properly defined random variable. Then (Xi) is a stationary
process, and it is causal or nonanticipative in the sense that Xi
does not depend on the future innovations �j, j � i. The causality
assumption is quite reasonable in the study of time series. Wiener
(1) considered the fundamental coding and decoding problem of
representing stationary and ergodic processes in terms of the
form Eq. 1. In particular, Wiener studied the construction of �i
based on Xk, k � i. The class of processes that Eq. 1 represents
is huge and it includes linear processes, Volterra processes, and
many time series models. In certain situations, Eq. 1 is also called
the nonlinear Wold representation. See refs. 2–4 for other deep
contributions of representing stationary and ergodic processes
by Eq. 1. To conduct statistical inference of such processes, it is
necessary to consider the asymptotic properties of the partial
sum Sn � ¥i�1

n Xi and the empirical distribution function Fn(x) �
n�1 ¥i�1

n 1Xi�x.
In probability theory, many limit theorems have been estab-

lished for independent random variables. Those limit theorems
play an important role in the related statistical inference. In the
study of stochastic processes, however, independence usually
does not hold, and the dependence is an intrinsic feature. In an
influential paper, Rosenblatt (5) introduced the strong mixing
condition. For a stationary process (Xi), let the sigma algebra
Am

n � �(Xm, . . . , Xn), m � n, and define the strong mixing
coefficients

�n � sup� ���A � B� � ��A���B� � : A � A��
0 , B � An

�� .

[2]

If �n3 0, then we say that (Xi) is strong mixing. Variants of the
strong mixing condition include �, �, and 	-mixing conditions
among others (6). A central limit theorem (CLT) based on the
strong mixing condition is proved in ref. 5. Since then, as basic
assumptions on the dependence structures, the strong mixing
condition and its variants have been widely used and various limit
theorems have been obtained; see the extensive treatment in
ref. 6.

Since the quantity ��(A � B) � �(A)�(B)� in Eq. 2 measures
the dependence between events A and B and it is zero if A and
B are independent, it is sensible to call �n and its variants
‘‘probabilistic dependence measures.’’ For stationary causal
processes, the calculation of probabilistic dependence measures

is generally not easy because it involves the complicated manip-
ulation of taking the supremum over two sigma algebras (7–9).
Additionally, many well-known processes are not strong mixing.
A prominent example is the Bernoulli shift process. Consider the
simple AR(1) process Xn � (Xn�1 	 �n)�2, where �i are iid
Bernoulli random variables with success probability 1�2 (see
refs. 10 and 11). Then Xn is a causal process with the represen-
tation Xn � ¥i�0

� 2�i�n�i and the innovations �n, �n�1, . . . ,
correspond to the dyadic expansion of Xn. The process Xn is not
strong mixing since �n 
 1�4 for all n (12). Some alternative
ways have been proposed to overcome the disadvantages of
strong mixing conditions (8,9).

Dependence Measures
In this work, we shall provide another look at the fundamental
issue of dependence. Our primary goal is to introduce ‘‘physical
or functional’’ and ‘‘predictive dependence measures’’ a previ-
ously undescribed type of dependence measures that are quite
different from strong mixing conditions. In particular, following
refs. 1 and 13, we shall interpret Eq. 1 as an input�output system
and then introduce dependence coefficients by measuring the
degree of dependence of outputs on inputs. Specifically, we view
Eq. 1 as a physical system

xi � g� . . . , ei�1, ei�, [3]

where ei, ei�1, . . . are inputs, g is a filter or a transform, and xi
is the output. Then, the process Xi is the output of the physical
system 3 with random inputs. It is clearly not a good way to assess
the dependence just by taking the partial derivatives 
g�
ej,
which may not exist if g is not well-behaved. Nonetheless,
because the inputs are random and iid, the dependence of the
output on the inputs can be simply measured by applying the idea
of coupling. Let (��i) by an iid copy of (�i); let the shift process
�i � (. . . , �i�1, �i), ��i � (. . . , ��i�1, ��i). For a set I � �, let �j,I �
��j if j � I and �j,I � �j if j � I; let �i,I � (. . . , �i�1,I, �i,I) and
�*i � �i,{0}. Then �i,I is a coupled version of �i with �j replaced
by ��j if j � I. For p � 0 write X � Lp if �X�p :� [�(�X�p)]1/p �
� and �X� � �X�2.

Definition 1 (Functional or physical dependence measure): For
p � 0 and I � � let �p(I, n) � �g(�n) � g(�n,I)�p and �p(n) �
�g(�n) � g(�*n)�p. Write �(n) � �2(n).

Definition 2 (Predictive dependence measure): Let p 
 1 and gn
be a Borel function on � 
 � 
 . . . � � such that gn(�0) �
�(Xn��0), n 
 0. Let �p(I, n) � �gn(�0) � gn(�0,I)�p and �p(n) �
�gn(�0) � gn(�*0)�p. Write �(n) � �2(n).

Definition 3 (p-stability): Let p 
 1. The process (Xn) is said to
be p-stable if �p :� ¥n�0

� �p(n) � �, and p-strong stable if �p :�
¥n�0

� �p(n) � �. If � � �2 � �, we say that (Xn) is stable.
By the causal representation in Eq. 1, if min{i : i � I} � n,

then �p(I, n) � 0. Apparently, �p(I, n) quantifies the dependence
of Xn � g(�n) on {�i, i � I} by measuring the distance between
g(�n) and its coupled version g(�n,I). In Definition 2, �(Xn��0) is
the n-step ahead predicated mean, and �p(n) measures the
contribution of �0 in predicting future expected values. In the
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classical prediction theory (14), the conditional expectation of
the form �(Xn�X0, X�1, . . .) is studied. The one �(Xn��0) used in
Definition 2 has a different form. It turns out that, in studying
asymptotic properties and moment inequalities of Sn, it is
convenient to use �(Xn��0) and predictive dependence measure
(cf. Theorems 2 and 3), while the other version �(Xn�X0, X�1, . . .)
is generally difficult to work with. In the special case in which Xn

are martingale differences with respect to the filter �(�n), gn �
0 almost surely and consequently �(n) � 0, n 
 1.

Roughly speaking, since gn(�0) � �(Xn��0), the p-stability in
Definition 3 indicates that the cumulative contribution of �0 in
predicting future expected values {�(Xn��0)}n
0 is finite. Inter-
estingly, the stability condition �2 � � implies invariance
principles with �n-norming in a natural way (Theorem 3). By (i)
of Theorem 1, p-strong stability implies p-stability since �p(n) 

�p(n).

Our dependence measures provide a very convenient and
simple way for a large-sample theory for stationary causal
processes (see Theorems 2–5 below). In many applications,
functional and predictive dependence measures are easy to use
because they are directly related to data-generating mechanisms
and because the construction of the coupled process g(�n,I) is
simple and explicit. Additionally, limit theorems with those
dependence measures have easily verifiable conditions and are
often optimal or nearly optimal. On the other hand, however, our
dependence measures rely on the representation 1, whereas the
strong mixing coefficients can be defined in more general
situations (6).

Theorem 1. (i) Let p 
 1 and n 
 0. Then �p(n) 
 �p(n). (ii) Let
p 
 1 and the projection operator PkZ � �(Z��k) � �(Z��k�1),
Z � Lp. Then for n 
 0,

�P0Xn�p � �p�n� � 2�P0Xn�p . [4]

(iii) Let p � 1, Cp � 18p3/2(p � 1)�1/2 if 1 � p � 2, Cp � �2p
if p 
 2; let I � �. Then

�p
p��I, n� � 2p�Cp

p� �
i�I

�p
p��n � i�, where p� � min�p , 2� . [5]

Proof: (i) Since �*n � (��1, ��0, �1, . . . , �n),

��g��n� � g��*n����1, ��0, �0�

� ��g��n����1, �0� � ��g��*n����1, ��0�

� gn��0� � gn��*0�,

which by Jensen’s inequality implies �p(n) 
 �p(n). (ii) Since
�[g(�n)���1] � �[gn(�0)���1] and ��0 and (�i) are independent, we
have �[gn(�0)���1] � �[gn(�*0)��0] and inequality 4 follows from

�P0Xn�p � ���gn��0� � gn��*0���0��p

� �gn��0� � gn��*0��p

� �gn��0� � ��gn��0����1��p

� ���gn��0����1� � gn��*0��p

� 2�P0Xn�p.

(iii) For presentational clarity, let I � {. . . , �1, 0}. For i � 0
let

Di � Di,n � ��Xn��i	1, �i	2, . . . , �n� � ��Xn��i, . . . , �n�

� ��g��n,�i�� � g��n���i, . . . , �n�.

Then D0, D�1, . . . are martingale differences with respect to the
sigma algebras �(�i, . . . , �n), i � 0, �1, . . . . By Jensen’s
inequality, �Di�p � �p(n � i). Let V � ¥i���

0 Di
2, M � ¥i���

0

Di and X̃n � �(Xn��1, . . . , �n). Then Xn � X̃n � �M and

�p�I, n� � �Xn � X̃n�p � �X̃n � g��n,I��p � 2�M�p .

To show Eq. 5, we shall deal with the two cases 1 � p � 2 and
p 
 2 separately. If 1 � p � 2, then Vp/2 � ¥i���

0 �Di�p. By
Burkholder’s inequality (15)

�M�p
p � Cp

p�V1/2�p
p � Cp

p �
i���

0

�p
p�n � i�.

If p 
 2, by proposition 4 in ref. 16, �M�p
2 � 2p ¥i���

0 �Di�p
2. So

Eq. 5 follows.
Inequality 5 suggests the interesting reduction property: the

degree of dependence of Xn on {�i, i � I} can be bounded in an
element-wise manner, and it suffices to consider the dependence
of Xn on individual �i. Indeed, our limit theorems and moment
inequalities in Theorems 2–5 involve conditions only on �p(n) and
�p(n).

Linear Processes. Let �i be iid random variables with �i � Lp, p 

1; let (ai) be real coefficients such that

Xt � �
i�0

�

ai�t�i, [6]

is a proper random variable. The existence of Xt can be checked
by Kolmogorov’s three series theorem. The linear process (Xt)
can be viewed as the output from a linear filter and the input
(. . . , �t�1, �t) is a series of shocks that drive the system (ref. 17,
pp. 8–9). Clearly, �p(n) � �p(n) � �an�c0, where c0 � ��0 �
��0�p � �. Let p � 2. If

�
i�0

�

�ai� � �, [7]

then the filter is said to be stable (17) and the preceding
inequality implies short-range dependence since the covariances
are absolutely summable. Definition 3 extends the notion of
stability to nonlinear processes.

Volterra Series. Analysis of nonlinear systems is a notoriously
difficult problem, and the available tools are very limited (18).
Oftentimes it would be unsatisfactory to linearize or approxi-
mate nonlinear systems by linear ones. The Volterra represen-
tation provides a reasonably simple and general way. The idea is
to represent Eq. 3 as a power series of inputs. In particular,
suppose that g in Eq. 3 is sufficiently well-behaved so that it has
the stationary and causal representation

g� . . . , en�1, en�

� �
k�1

� �
u1, . . . ,uk�0

�

gk�u1, . . . , uk�en�u1
. . . en�uk

, [8]

where functions gk are called the Volterra kernel. The right-hand
side of Eq. 8 is generically called the Volterra expansion, and it
plays an important role in the nonlinear system theory (13,18–
22). There is a continuous-time version of Eq. 8 with summations
replaced by integrals. Because the series involved has infinitely
many terms, to guarantee the meaningfulness of the represen-
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tation, there is a convergence issue that is often difficult to deal
with, and the imposed conditions can be quite restrictive (18).
Fortunately, in our setting, the difficulty can be circumvented
because we are dealing with iid random inputs. Indeed, assume
that et are iid with mean 0, variance 1 and gk(u1, . . . , uk) is
symmetric in u1, . . . , uk and it equals zero if ui � uj for some
1 � i � j � k, and

�
k�1

� �
u1, . . . ,uk�0

�

gk
2�u1, . . . , uk� � �.

Then Xn exists and is in L2. Simple calculations show that

�2�n�

2
� �

k�1

� �
min�u1, . . . uk��n

gk
2�u1, . . . , uk�

� �
k�1

�

k �
u2, . . . uk�n	1

�

gk
2�n , u2, . . . , uk� ,

and

�2�n�

2
� �

k�1

�

k �
u2, . . . uk�0

�

gk
2�n, u2, . . . , uk�.

The Volterra process is stable if ¥i�1
� �(i) � �.

Nonlinear Transforms of Linear Processes. Let (Xt) be the linear
process defined in Eq. 6 and consider the transformed process
Yt � K(Xt), where K is a possibly nonlinear filter. Let �(n, Y)
be the predictive dependence measure of (Yt). Assume that �i
have mean 0 and finite variance. Under mild conditions on K, we
have �P0Yn� � O(�an�) (cf. theorem 2 in ref. 23). By Theorem 1,
�(n, Y) � O(�an�). In this case, if (Xt) is stable, namely Eq. 7
holds, then (Yt) is also stable.

Quite interesting phenomena happen if (Xn) is unstable.
Under appropriate conditions on K, (Yn) could possibly be
stable. With a nonlinear transform, the dependence structure of
(Yt) can be quite different from that of (Xn) (24–27). The
asymptotic problem of Sn(K) � ¥t�1

n K(Xt) has a long history
(see refs. 23 and 27 and references therein). Let K�(w) �
�[K(w 	 Xt)] and assume K� � C� (�) for some � � �. Consider
the remainder of the �-th order Volterra expansion of Yn

L�����n� � Yn � �
r�0

�

�rUn,r, [9]

where �r � K�
(r)(0), r � 0, . . . , �, and

Un,r � �
0�j1� . . . �jr��

�
s�1

r

ajs�n�js.

Let �n � �an�1�[�an�1� 	 An
1/2 (4) 	 An

�/2 (2)] and An(j) � ¥t�n
�

�at�j. Under mild regularity conditions on K and �n, by theorem
5 in ref. 23, �P0L(�)(�n)� � O(�n	1). By Theorem 1, the predictive
dependence measure �(�)(n) of the remainder L(�)(�n) satisfies

�����n� � O��n	1�. [10]

It is possible that ¥n�1
� �n � � while ¥n�1

� �an� � �. Consider the
special case an � n�	l(n), where 1�2 � 	 � 1 and l is a slowly
varying function, namely, for any c � 0. l(cn)�l(n) 3 1 as n 3
�. By Karamata’s Theorem (28) for j 
 2, An( j) � O[n1�	jlj(n)].

If � � (2	 � 1)�1 � 1, then �n � O[n�(1/2�	)l�(n)] is summable.
Therefore, if the function K satisfies �r � 0 for r � 0, . . . , � and
(� 	 1)(2	 � 1) � 1, then Yt � K(Xt) is stable even though Xt
is not. Appell polynomials (29) satisfy such conditions. For
example, let K(x) � x2 � �(Xn

2), then K�(w) � w2 and �1 � 0,
�2 � 2. If 	 � (3�4, 1), then the process Xt

2 � �(Xt
2) is stable. If

1�2 � 	 � 3�4, then Sn(K)��Sn(K)� converges to the Rosenblatt
distribution.

Uniform Volterra expansions for Fn(x) over x � � are
established in refs. 30 and 31. Wu (32) considered nonlinear
transforms of linear processes with infinite variance innovations.

Nonlinear Time Series. Let �t be iid random variables and consider
the recursion

Xt � R�Xt�1, �t�, [11]

where R is a measurable function. The framework 11 is quite
general, and it includes many popular nonlinear time series
models, such as threshold autoregressive models (33), exponen-
tial autoregressive models (34), bilinear autoregressive models,
autoregressive models with conditional heteroscedasticity (35),
among others. If there exists � � 0 and x0 such that

��log L�� � 0 and L�0
� �R�x0, �0� � � L�, [12]

where

L� � sup
x�x�

�R�x , �� � R�x� , �� �
�x � x� � ,

then Eq. 11 admits a unique stationary distribution (36), and
iterations of Eq. 11 give rise to Eq. 1. By theorem 2 in ref. 37, Eq.
12 implies that there exists p � 0 and r � (0, 1) such that

�Xn � g��n,I��p � O�rn�, [13]

where I � {. . . , �1, 0}. Recall �*n � �n,{0}. By stationarity,
�g(�*n) � g(�n,I)�p � �g(�n	1) � g(�n	1,I)�p. So Eq. 13 implies
�p(n) � �g(�*n) � Xn�p � O(rn). On the other hand, by Theorem
1 (iii), if �p(n) � O(rn) holds for some p � 1 and for some r �
(0,1), then Eq. 13 also holds. So they are equivalent if p � 1. In
refs. 37 and 38, the property 13 is called geometric-moment
contraction, and it is very useful in studying asymptotic prop-
erties of nonlinear time series.

Inequalities and Limit Theorems
For (Xi) defined in Eq. 1, let Su � Sn 	 (u � n)Xn	1, n � u �
n 	 1, n � 0, 1, . . . , be the partial sum process. Let Rn(s) �
�n[Fn(s) � F(s)], where F(s) � �(X0 � s) is the distribution
function of X0. Primary goals in the limit theory of stationary
processes include obtaining asymptotic properties of {Su, 0 �
u � n} and {Rn(s), s � �}. Such results are needed in the related
statistical inference. The physical and predictive dependence
measures provide a natural vehicle for an asymptotic theory for
Sn and Rn.

Partial Sums. Let S*n � maxi�n �Si�, Zn � S*n��n and Bp �
p�2p�(p � 1), p � 1. Recall �p � ¥k�0

� �p(k) and let

�p � �
k�0

�

�P0Xk�p.

By Theorem 1, �p � �p � 2�p. Moment inequalities and limit
theorems of Sn are given in Theorems 2 and 3, respectively.
Denote by IB the standard Brownian motion. An interesting
feature in the large deviation result in Theorem 2(ii) is that �p
and Xk do not need to be bounded.
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Theorem 2. Let p 
 2. (i) We have �Zn�p � Bp�p � Bp�p. (ii) Let
0 � � � 2 and assume

� : � lim sup
p3�

p1/2�1/��p � � . [14]

Then m(t) :� supn���[exp(tZn
�)] � � for 0 � t � t0, where t0 �

(e���)�12��/2. Consequently, for u � 0, �(Zn � u) �
exp(�tu�)m(t).

Proof: (i) It follows from W.B.W. (unpublished results) and
theorem 2.5 in ref. 39. For completeness we present the proof
here. Let Mk, j � ¥i�1

j Pi�kXi, k, j 
 0 and M*k,n � maxj�n�Mk, j�.
Then Sn � ¥k�0

� Mk,n. By Doob’s maximal inequality and
theorem 2.5 in ref. 39 (or proposition 4 in ref. 16),

�M*k,n�p � p�p � 1��1�Mk,n�p � Bp�n�Mk,1�p.

Since S*n � ¥k�0
� M*k,n, (i) follows. (ii) Let Z � Zn and p0 � [2��]

	 1. By Stirling’s formula and Eq. 14

lim sup
p3�

tB�p
� ��p

�

�p!�1/p � lim sup
p3�

tB�p
� ��p

�

�2�p�1/�2p�p�e

� te���2�/2 � 1.

By (i), since ev � ¥p�0
� vp�(p!), (ii) follows from

�
p�p0

�
���tZ��p�

p!
� �

p�p0

� tp�B�p��p�
�p

p!
� �.

Example 1: For the linear process 6, assume that

#�i:�ai� � �� � O���1/2� as �20, [15]

and A :� �(e��0�) � �. We now apply (ii) of Theorem 2 to the sum
n[Fn(u) � F(u)] � ¥i�1

n g̃(�i), where g̃(�i) � 1Xi�u � F(u). To
this end, we need to calculate the predictive dependence mea-
sure �p(n, g̃) (say) of the process g̃(�n). Without loss of generality
let a0 � 1. Let F� and f� be the distribution and density functions
of �0 and assume c :� supuf�(u) � �. Then Eq. 14 holds with � �
1. To see this, let Yn�1 � Xn � �n, Zn�1 � Yn�1 � an�0 and
Y*n�1 � Zn�1 	 an��0. Let n 
 1. Then �(1Xn�u��0) � �[F�(u �
Yn�1)��0] and �[F�(u � Zn�1)��*0] � �[F�(u � Zn�1)��0]. By the
triangle inequality,

Qn :� ���F��u � Yn�1���0� � ��F��u � Y*n�1���*0��

� ���F��u � Yn�1���0� � ��F��u � Zn�1���0��

� ���F��u � Zn�1���*0� � ��F��u � Y*n�1���*0��

� ��c�Yn�1 � Zn�1��0� � ��c�Zn�1 � Y*n�1���*0]

� c�an����0� � ���0��.

Hence, �p(n, g̃) � �Qn�p � 2c�an���0�p. Since A � �(e��0�), we
have �(��0�p) � p!A, ��0�p � pA1/p. Clearly, 0 � Qn � 1. So �p(n,
g̃) � min(1, C�an�p), where C � 2cA. For � � 0 let the set J(�) �
{i 
 0 : ��2 � �ai� � �}. By Eq. 15

�p � �
i�0

�

min�1, C �ai�p�

� �
i:�ai�
p�1

min�1, C �ai�p�

� �
k�0

� �
i�J��p2k��1�

min�1, C �ai�p�

� O��p� � �
k�0

�

O��p2k	1�1/2�p2k��1Cp�

� O��p� .

Condition 15 holds if ai � O(i�2).

Theorem 3. (i) Assume that �2 � �. Then

�Snt��n, 0 � t � 1�f ��IB�t�, 0 � t � 1�, [16]

where � � �¥i�0
� P0Xi� � �2. (ii) Let 2 � p � 4 and assume that

¥i�0
� i�p(i) � �. Then on a possibly richer probability space, there

exists a Brownian motion IB such that

sup
u��0,n�

�Su � �IB�u� � � O�n1/pl�n�� almost surely, [17]

where l(n) � (log n)1/2	1/p(log log n)2/p.
The proof of the strong invariance principle (ii) is given by

W.B.W. (unpublished results). Theorem 3(i) follows from cor-
ollary 3 in ref. 40, and the expression � � �¥i�0

� P0Xi� is
a consequence of the martingale approximation: let Dk �
¥i�k

� PkXi and Mn � D1 	 . . . 	 Dn, then �Sn � Mn� � o(�n)
and �Sn���n � � 	 o(1) (see theorem 6 in ref. 41). Theorem
3(i) also can be proved by using the argument in ref. 42. The
invariance principle in the latter paper has a slightly different
form. We omit the details. See refs. 43 and 44 for some related
works.

Empirical Distribution Functions. Let Hi(u��0) � �(Xi � u��0), u �
�, be the conditional distribution function of Xi given �0. By
Definition 2, the predictive dependence measure for g̃(�i) �
1Xi�u � F(u), at a fixed u, is �Hi(u��0) � Hi(u��*0)�p. To study the
asymptotic properties of Rn, it is certainly necessary to consider
the whole range u � (��, �). To this end, we introduce the
integrated predictive dependence measure

�p
�j��i� � ��

�

�Hi
�j��u��0� � Hi

�j��u��*0��p
pdu	1/p

, [18]

and the uniform predictive dependence measure

�p
�j��i� � sup

u
�Hi

�j��u ��0� � Hi
�j��u ��*0��p, [19]

where Hi
(j)(u��0) � 
j Hi(u��0)�
uj, j � 0, 1, . . . , i 
 1. Let hi(t��0) �

Hi
(1)(t��0). Theorem 4 below concerns the weak convergence of Rn

based on �2
(j)(i). It follows from corollary 1 by W.B.W. (unpublished

results).

Theorem 4. Assume that X1 � L� and supuh1(u��0) � c0 for some
positive constants �, c0 � �. Further assume that

�
i�1

�

��2
�0��i� � �2

�1��i� � �2
�2��i�� � �. [20]

Then Rn f {W(s), s � �}, where W is a centered Gaussian
process.

Kernel Density Estimation. An important problem in nonparamet-
ric inference of stochastic processes is to estimate the marginal
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density function f (say) given the data X1, . . . , Xn. A popular
method is the kernel density estimation (45,46). Let K be a
bounded kernel function for which ��K(u)du � 1 and bn � 1 be
a sequence of bandwidths satisfying

bn 3 0 and nbn 3 � . [21]

Let Kb(x) � K(x�b). Then f can be estimated by

fn�x� �
1

nbn
�
i�1

n

Kbn
�x � Xi�. [22]

If Xi are iid, Parzen (46) proved a central limit theorem for
fn(x) � �[fn(x)] under the natural condition 21. There has been
a substantial literature on generalizing Parzen’s result to time
series (47,48). Wu and Mielniczuk (49) solved the open problem
that, for short-range dependent linear processes, Parzen’s central
limit theorem holds under Eq. 21. See references therein for
historical developments. Here, we shall generalize the result in
ref. 49 to nonlinear processes. To this end, we shall adopt the
uniform predictive dependence measure 19. The asymptotic
normality of fn requires a summability condition of �(1)(k) �
supt�hk(t��0) � hk(t��*0)�.

Theorem 5. Assume that supu h1(u��0) � c0 for some constant c0 �
� and that f � F� is continuous. Let � :� �� K2(u)du � �. Then
under Eq. 21 and

�
k�1

�

��1��k� � �, [23]

we have �nbn{fn(x) � �[fn(x)]} f N[0, f(x)�] for every x � �.
Proof: Let m be a nonnegative integer. By the identity

�[�(Xm	1 � u��m)��0] � �(Xm	1 � u��0) and the Lebesgue
dominated convergence theorem, we have �[h1(u��m)��0� �
hm	1(u��0) and hm	1 is also bounded by c0. By Theorem 1(ii),
�P0h1(u��m)� � �(1)(m	1). Let An(u) � ¥i�1

n h1(u��i�1) �
nf(u). By Theorem 2(i) and Eq. 23

supu�An�u��
B2�n

� sup
u

�
m�0

�

�P0h1�u ��m�� � � .

Let Mn � ¥i�1
n PiKbn

(x � Xi) and Nn � �� K(v)An(x � bnv)dv.
Observe that

��Kbn
�x � Xi���i�1� � bn�

�

K�v�h1�x � bnv��i�1�dv.

Then nbn{fn(x) � �[fn(x)]} � Mn 	 bnNn. Following the
argument of lemma 2 in ref. 49, Mn��nbnf N[0, f(x)�], which
finishes the proof since ��Nn� � O(n1/2) and bn 3 0.
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