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In this paper, we introduce a method to account for the shape of
the potential energy curve in the evaluation of conformational free
energies. The method is based on a procedure that generates a set
of conformations, each with its own force-field energy, but adds a
term to this energy that favors conformations that are close in
structure (have a low rmsd) to other conformations. The sum of the
force-field energy and rmsd-dependent term is defined here as the
‘‘colony energy’’ of a given conformation, because each confor-
mation that is generated is viewed as representing a colony of
points. The use of the colony energy tends to select conformations
that are located in broad energy basins. The approach is applied to
the ab initio prediction of the conformations of all of the loops in
a dataset of 135 nonredundant proteins. By using an rmsd from a
native criterion based on the superposition of loop stems, the
average rmsd of 5-, 6-, 7-, and 8-residue long loops is 0.85, 0.92,
1.23, and 1.45 Å, respectively. For 8-residue loops, 60 of 61 pre-
dictions have an rmsd of less than 3.0 Å. The use of the colony
energy is found to improve significantly the results obtained from
the potential function alone. (The loop prediction program,
‘‘Loopy,’’ can be downloaded at http:��trantor.bioc.columbia.edu.)

force field � energy minimization � protein structure prediction

Protein loops are usually defined as segments of the polypep-
tide chain that do not contain regular units of secondary

structure. Although some loops seem to serve as no more than
connectors between secondary structure elements, others have
been implicated as determinants of protein stability and folding
pathways, while others may play important functional roles. The
loop prediction problem involves finding the correct conforma-
tion for a given loop under the constraint that both ends are fixed
through their connection to the rest of the protein. The problem
has taken on considerable importance with the increased appli-
cation of homology modeling methods in protein structure
prediction. Although secondary structure elements can, in many
cases, be predicted with considerable accuracy because they are
often well conserved, sequence and structural variability are
integral properties of many loops where, as in the case of
antibodies, specificity differences among family members often
reside. This variability makes the problem of loop prediction
particularly complicated because, by its very nature, homology
methods will often not be applicable. Indeed, loop prediction can
to some extent be viewed as a mini ab initio folding problem,
because the necessary information will not necessarily be found
in databases. As such, the problem also serves as an important
test of our understanding of the physical chemical principles that
determine protein structure.

Two general approaches have been applied to the prediction
of loop conformation: database search and ab initio techniques.
In the database search method (1–6), a library of segments
derived from known protein structures is searched for confor-
mations that fit the topological constraint of the loop stems. The
stems correspond to the main-chain atoms that precede and
follow the loop, but are not part of the loop itself. Loop
candidates found in this way then can be evaluated by different

criteria such as sequence relationships between the template and
query segment or some measure of conformational energy (7).
The database method assumes that the template library contains
fragments that are similar to those of the target sequence. In
some applications, such methods can be very powerful, for
example, when canonical structures exist, as is the case for the
hypervariable loops of antibodies (8–9). However, in general,
there is no guarantee that the correct loop conformation can be
found in the PDB. It has been estimated that only segments of
five residues or less are adequately sampled by database methods
(10), although a more recent paper (11) found that ab initio
generation of conformations becomes more effective for loops of
length six or longer. Viijmen and Karplus (12) have pointed out
that database search methods can be extended to longer loops if
the candidate loops are subsequently evaluated and optimized,
in effect increasing the sampling efficiency of these methods.
However, a very recent paper (13) obtained average rmsd values
for eight-residue loops of only 3.8 Å (7), which is well below the
accuracy obtained from recent ab initio methods.

Ab initio methods involve the generation of a large number of
loop conformations, usually randomly, and their evaluation
based on some sort of energy function (13–16). Loop closure is
obtained by using methods such as random tweak (17), energy
penalties (18), or analytical closure (19). Loop prediction accu-
racy depends on the effectiveness of the conformational search
procedure and on the quality of the force field used to evaluate
the conformational energy. Increased computer power has re-
duced the problem posed by conformational sampling and, for
loops of at least up to 12 residues, conformations close to the
native with rmsds of less than 2.0 Å can generally always be found
if 2,000 random loops are generated (data not shown; ref. 16).
Thus, for loops of this length or less, prediction accuracy depends
on the quality of force field.

Although current force fields that account for solvation effects
might be expected to pick out the native conformation in a set
of randomly generated loops, the native conformation does not
always correspond to the conformation of lowest energy (20).
Nevertheless, loop prediction accuracy continues to improve
with the best results reported in the literature to date corre-
sponding to average rmsds from native of about 1.8 Å as
obtained from a superposition of the loop stems (11, 13, 21),
which corresponds to about 1.2 Å if the local rmsd measure,
involving minimizing the rmsd of loop atoms alone, is used (13).

One issue that complicates most evaluations of conforma-
tional free energies is that they do not in general account for loop
flexibility. Flexibility is likely to be of particular importance for
many loops, and, in some cases, may be associated with their
function. More generally, conformations that are located in
broad energy basins will be favored for entropic reasons, but this
is not accounted for when the energy of a single conformation
is calculated. In principle, a search procedure should not be
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looking for the global energy minimum but rather should
attempt to identify a state of lowest free energy in which entropy
also is taken into account. A second reason to favor broad energy
basins relates to the problem of sampling a large number of
conformations. If a large number of states that are close in
structure and energy are detected, the probability that other
nearby states exist, some of them with even lower conforma-
tional energies, should increase.

In this paper, we introduce a new approach to account for the
shape of the potential energy curve which is based on a variable
that we term the ‘‘colony energy.’’ The colony energy of a state
includes a standard energy term, as obtained, for example, from
a force field, but it also includes a term that favors conformations
that have many neighbors in configurational space. This latter
term is derived by assuming that the number of states that
surround a particular conformation generated in a sampling
procedure is related to the number of other points not sampled
that are close to it in conformation. Effectively, we assume that
each sampled conformation represents a ‘‘colony’’ of states that
are not sampled, and that the size of this colony can be estimated
from the number and proximity of neighboring states. The
colony energy approach is applied in this paper to the loop
prediction problem and, in most cases, is shown to produce an
excellent correlation between energy and rmsd from native.
Moreover, even the use of a simple force field yields loop
predictions that are at least comparable in accuracy to the best
results that have been reported in the literature, but at a small
fraction of the computer time.

Methods
The Colony Energy. Suppose we generate N loop candidates such
that the ith loop candidate has an energy �Ei. The energy �Ei

is derived from some force field and may include terms that
account for solvent effects as well. The number of conformations
in state i, Mi, is given by (22)

Mi � M0exp���Ei�RT���k exp���Ek�RT� [1]

where k ranges from 1 to M0. M0 is the total number of distinct
loops that could in principle exist, most of which are not included
in the N states that were generated. Thus, M0 is much larger than
N. R is the gas constant, and T is absolute temperature. A given
ensemble of loops will obey statistical mechanics if it contains a
very large number of conformations. However, in real applica-
tions, only a limited number of conformations can be generated
so that conformation space will be sparsely sampled. Moreover,
regions of conformational space that are heavily populated will,
in general, correspond to broad energy basins which would be
expected to be favored for entropic reasons, a preference that is
not accounted for by the molecular mechanical energy, �Ei. To
account for the existence of loops that are not sampled directly,
we assume that each loop that is generated represents other
loops that have similar conformations. Thus, the total number of
states that the ith loop candidate represents is:

Pi � Mi � Mi, neighbor [2]

where Mi, neighbor is the number of neighboring states that are
represented by loop candidate i. Si � Rln(Pi) may be interpreted
as the entropy associated with broad energy basin-containing
conformation i, which also includes contributions from the
neighboring states Mi, neighbor. We guess this number by assuming
that it is related to the number of neighboring loops that are
actually sampled so that

Mi, neighbor � ��j�i �ijMj� [3]

where j ranges from 1 to N and �ij is a function that increases
when loops i and j have similar structures. Thus, if loop i has
many neighbors with similar conformations that are found by the
loop generation procedure, the probability that there are other
loops in this region of conformation space will increase. We
define �ij as

�ij � exp��rmsdij
3�6L Å3� [4]

where rmsdij is the rms deviation in angstroms between loop
candidates i and j, L is the number of residues in the loop, and
the exponent is defined so as to be dimensionless. The exponent
is Eq. 4 provides a measure for the contribution of states in the
energy basin centered around conformation i; this is because
rmsdij

3�6L Å3 may be interpreted as the volume in conformation
space divided by the volume per conformation, with proportion-
ality factor 6L determined empirically. The rmsd between two
loops is calculated by superimposing their corresponding loop
stems. Neither the loop stems nor side chains on the loop are
included in the rmsd calculation. Throughout the paper, we used
‘‘rmsd’’ as a measure of prediction accuracy. The calculation of
rmsd is carried out in an identical fashion to the calculation of
rmsd except that in the former case, a predicted loop is super-
imposed on the native conformation while in the latter, two
predicted loops are superimposed.

The form of the equation given in Eq. 4 is designed so that �ij,
whose range is between 0 and 1, decreases sharply with increas-
ing rmsd. However, the exact expression for �ij is quite arbitrary.
Eq. 4 was obtained by optimizing results on four loops (see
below).

Substituting Eqs. 1, 3, and 4 into Eq. 2 yields

Pi � M0�j �exp��rmsdij
3�6LÅ3�exp���Ej�RT���

�k exp���Ek�RT� [5]

where j ranges from 1 to N and k from 1 to M0. The first term
of Eq. 2 is automatically incorporated into Eq. 5 in the case of
j � i.

The total probability of conformations represented by state i,
Xi, is given by

Xi � Pi��j Pj [6]

and the conformational free energy associated with state i is then
(see ref. 22)

�Gi � �RT*ln�Xi� [7]

Substituting Eqs. 5 and 6 into Eq. 7 yields

�Gi � �RT*ln��j exp(��Ej�RT � rmsdij
3�6L Å3)� � C

[8]

where j ranges from 1 to N. The constant in Eq. 8 corresponds
to the sums over states k and j in Eqs. 5 and 6, respectively. These
sums are characteristics of particular loop sets and will have the
same value for all loop candidates. Thus, they are ignored in our
treatment. Note that the colony energy �Gi is equal to the
force-field energy of loop i, �Ei, if all other loops have a large
rmsd from loop i, but if loop i has many neighbors with low rmsd,
then the colony energy will be less than the force-field energy.
The more neighboring loops of lower energy that are found, the
more loop i will be favored energetically. For rigid loops in steep
energy minima, the colony energy will be close to the force-field
energy, because the neighboring loops will have a high energy
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and, thus, will contribute little to the colony energy. The form of
the expression for the colony energy is such that it contains an
energy term and a term that accounts for the broad energy basin,
which in some sense mimics the conformational entropy. With-
out the rmsd term in Eq. 8, the colony energy �Gi would be equal
to the Gibbs ensemble energy, and all of the loops in the
ensemble would have the same value of �G. In contrast, the use
of the colony energy expression favors loop candidates with
many closely related neighbors.

Conformational Energy. The energy, �Ej, of loop j should in
principle be calculated by using as accurate an expression as
possible. In practice, there is usually a tradeoff between accuracy
and computational efficiency. In this paper, we have used a
simple expression that ignores electrostatic effects but accounts
for van der Waals interactions, hydrophobicity, torsional energy,
and hydrogen bonding. We chose to ignore electrostatic effects
to avoid the need to solve the Poisson–Boltzmann equation for
every loop conformation.

The conformational energy is written as

�E � �Ehydro � �Evw � �Ehb � �Etorsion [9]

The hydrophobic energy is evaluated with the expression �Ghydro
� �AT, where � is 0.025 kcal�mol�Å2 and AT is the solvent-
accessible surface area of the protein. Differences in buried
surface area between loops are simply reflected in differences in
the total surface area. Hydrogen bond energies are evaluated
with the method of Stickle et al. (23), where the minimum in the
potential well is �0.5 kcal�mol at a distance of 3.0 Å between
two heavy atoms (e.g., N and O). Torsional energies, �Etorsion,
are calculated by using CHARMM22 parameters (24) after side-
chains are assembled onto the loop backbone.

We use an expression for the van der Waals energy in which
the repulsive term has been softened so as to reduce sensitivity
to small changes in atomic positions (16). By trial and error, we
arrived at a function (Eq. 10) that fits the CHARMM van der Waals
potential curve.

�Evw � �61.66 exp��2 r2�*�1�r � 1.12�r0.5� [10]

� is the energy at the minimum of the potential function and is
chosen to correspond to the minimum in the van der Waals
potential of the CHARMM22 force field between the two inter-
acting atoms, r is the ratio of the interatomic distance and the
sum of the van der Waals radii of two interacting atoms.

Test Sets of Loops. A fair evaluation of loop prediction method
requires testing a given method on as many different loops as
completely as possible. Here, we use a test set consisting of all
loops of length 5–12 residues in a set of 135 proteins compiled
by R. L. Dunbrack (available at http:��www.fccc.edu�
research�labs�dunbrack�culledpdb.html). This set was de-
signed so as to correspond to the smallest group of proteins that
represents the entire PDB so that no two proteins have a
pairwise sequence identity of greater than 20% and where the
resolution of each protein is better than 2.0 Å. The total number
of loops of 5, 6, 7, 8, 9, 10, 11, and 12 residues long is 161, 107,
74, 61, 58, 34, 37, and 21, respectively. Loops are defined here
as irregular regions connecting two standard secondary structure
elements as defined by Database of Secondary Structure in
Proteins (25). Hydrogen atoms were added to the proteins with
WHATIF (26), where heavy atoms are fixed at their original
positions. The expression for �ij (Eq. 4) was optimized to yield
low rmsds for four loops in the protein ribonuclease-A (1rat;
residue from 12 to 23 and from 63 to 70) and proteinase inhibitor
(5pti; from residue 6 to 16 and from 35 to 43). The optimized

rmsds for these four loops are 2.62, 0.53, 0.96 and 0.60 Å for loop
12–23, 63–70 in 1rat, and 6–16 and 35–43 in 5pti, respectively.

Loop Prediction Procedure. Our loop prediction procedure begins
with the generation of 2,000 random backbone conformations
that are closed with the random tweak method (17). For each
loop candidate, side chains are assembled onto the backbone
with the side-chain prediction program SCAP, in which a 40°
rotamer library compiled from 135 proteins is used (27). The
2,000 loop candidates then are subjected to an energy minimi-
zation by using a simplified force field consisting only of the
softened van der Waals energy, �Evw, given in Eq. 10. We use a
fast torsional minimizer (Z.X. and B.H., unpublished work) that
can find the minimum of an eight-residue loop in less than 0.1
seconds on an SGI R10000. After the initial minimization, the
1,000 lowest energy conformations are retained. The colony
energy �G is calculated for each of the 1,000, and of these, 30%
survive for the next step.

Pairs of loops with rmsd (in Å) greater than L�10 and less than
L (L is the number of residues of the loop) are then combined
(i.e., for an eight-residue loop, the first four residues in one loop
are combined with the last four in another) to form a new loop
that is fused in the middle with the ‘‘random tweak’’ procedure.
This process produces a new set of loops in addition to the
original 300 loops that were retained. Of this new set, the
lowest-energy 30% again survive, and the procedure is repeated
until a single loop remains or the number of iteration steps is
greater than 5. In any of the above steps, no more than 300 loops
are allowed to survive to the next generation. The entire
procedure takes about 20 min for a loop of eight residues.

Results
Details of Application to a Single Loop. In this section, the colony
energy approach is applied to the loop involving residues 64–71
in ribonuclease-A (1rat-A). This loop is one of four used to
optimize the expression for �ij. The loop is on the protein surface
and protrudes into the solvent so that there are few geometric
restrictions that limit the direction in which the loop points. We
did not consider the disulfide bond between Cys-65 and Cys-72,
although taking account of this bond would dramatically simplify
the prediction problem for this loop.

Fig. 1a plots �E vs. rmsd for the 1,000 lowest energy loop
conformations generated as described above. It is evident that no
correlation exists. The native conformation has energy of �20.45
kcal�mol, ranking 86th of the 1,000 loop candidates. The loop
candidate with the lowest rmsd, 0.53 Å, has an energy of �24.3

Fig. 1. Colony energy analysis for loops 63–70 in ribonuclease-A (1rat). (a)
Plot of energy vs. rmsd for the candidate loops. The native conformation is the
point on the y axis. (b) Plot of colony energy vs. rmsd for the loops shown in
a. The native conformation is also on the y axis. (c) Colony energy vs. rmsd for
the loops generated from the loop fusion procedure applied to the loops in b.
(d) The colony energy–rmsd plot after three iterations of loop–loop fusion and
colony energy sorting.
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kcal�mol, 3.1 kcal�mol greater than the loop of the lowest
energy (rmsd 2.84 Å). Most of loops have energies between �10
and �20 kcal�mol and have rmsds between 2 and 4 Å. The 20
lowest energy loops in Fig. 1a have average rmsds of 2.3 Å. Fig.
1b contains a comparable plot of the colony energy, �G, vs.
rmsd. The difference between the two plots is dramatic. As
opposed to the result when the force-field energy is used (Fig.
1a), there is a strong correlation between colony energy and
rmsd. The loop with the lowest colony energy (�34.6 kcal�mol)
has an rmsd of 1.49 Å, whereas the best loop candidate (rmsd of
0.53 Å) has colony energy �34.4 kcal�mol. Furthermore, the
reliability of the prediction has significantly increased because
almost all of the lower energy loops have low rmsd. For example,
the 20 lowest energy loops now have an average rmsd 1.5 Å,
significantly below the 2.3 Å mentioned above. The native
conformation has colony energy of �34.5 kcal�mol, only 0.1
kcal�mol higher than the lowest energy loop.

Fig. 1c plots �G vs. rmsd for loops generated with the
loop-fusion procedure applied to the lowest energy 300 loops
from Fig. 1b. The colony energy of each of the 4,356 loops
generated in this way then was calculated and, of these, the 1,000
loops with the lowest colony energy were plotted in Fig. 1c. The
loop with the lowest colony energy has an rmsd of 0.89 Å. Three
more iterations yields Fig. 1d, where the lowest colony energy
structure has an rmsd of only 0.57 Å.

Loop Prediction for 135 Proteins. The same procedure was applied
to each of the 5 to 12 residue loops in the 135 proteins listed by
Dunbrack. The average rmsd for these loops is listed in Table 1,
where the average is obtained by dividing the sum of the rmsds
of all loops of length L by the total number of loops of that
length. Three averages are provided: (i) rmsd without the use of
colony energy; (ii) rmsd using the colony energy; and (iii) rmsd
using the colony energy but ignoring side chains (no atoms
beyond C�). It is clear from the table that the colony energy
improves prediction accuracy for all loop lengths (that the
predictions for some longer loops are better than for some
shorter loops is likely to be an artifact of sample size).

As shown in Table 1, including side chains has little effect on
prediction accuracy for short and longer loops, but has a
somewhat large effect for medium loops. For loops of length less
than 6 and greater than 11, including side chains only improves
results by 	0.2 Å; for medium loops of length between 7–10, side
chains have a larger effect. Accuracy decreases by .43 Å when
side chains are ignored for 8 residue loops and by only 0.08 Å for
12 residue loops. The reason may be that for short loops, the stem
constraints are already strong enough to define the loop con-
formation, whereas for longer loops, the large rmsd of the
backbone (	3.5 Å even with side chains considered) makes
side-chain prediction highly inaccurate. The results for longer
loops may also be because of an insufficient number of loops to
allow for meaningful averages.

Results for all 61 of the 8 residue loops tested here are listed
in Table 2. Two rmsd values are listed for each loop and
correspond to the rmsd values without use of the colony energy

(next to last column) and with the colony energy (last column).
When the colony energy is used, only 1 of the 61 loops have
rmsds greater than 3.0 Å. For loops of eight residues, an rmsd
of less than 3.0 Å usually implies that the loop points in the same
direction as the native conformation. To determine the effect of
geometric restraints on prediction accuracy, the percent of each
loop that is exposed relative to the isolated loops, s, and, d, the
distance between the two C� atoms of the stem residues of a
loop, are listed in the table. In general, the expectations that
buried loops (small s) or long loops (large d) are more accurately
predicted are borne out by the results listed in Table 2. The loop
with the largest value of d (21.7 Å), on protein oxidoreductase
(1nif) 279–286, was predicted quite accurately with an rmsd of
0.31 Å, the second best in the list. The only prediction with rmsd
larger than 3.0 Å is for a loop on the protein transferees 1btk
(133–140), which has the largest value of s (25.3%).

Comparison of the two rmsd values in Table 2 reveals that the
colony energy improves prediction accuracy in 44 of the 61 loops.
In many cases, the effect is quite dramatic. For the 17 cases where
colony energy lowers prediction accuracy, the effect is generally
very small, except for loops 221–228 in oxidoreductase (1nif),
where the accuracy drops from 0.75 Å to 1.99 Å. The success of
the colony energy model results from the good correlation it
yields between energy and rmsd. Figs. 2a and b show another
example of the effect of colony energy on the rmsd–energy
correlation for one of the loops (96–103 in 1c52, an electron
transport protein) in the test set. Use of the colony energy
increases prediction accuracy from rmsd 2.50 to 1.60 Å. Another
two rounds of loop fusion brings the rmsd down to 1.32 Å. In Fig.
2a, the native conformation has an energy of �18.1 kcal�mol, 7.7
kcal�mol higher than the loop with the lowest energy, which has
an rmsd 2.50 Å. However, the colony energy of the native
conformation is very close to the lowest energy with difference
of 0.05 kcal�mol. Although the use of the colony energy
increases prediction accuracy, there are a few examples where
this is not the case, as shown in Table 2. However, even in these
cases, the reduction in accuracy is generally quite small.

Discussion
In this paper, we have described a method to introduce the shape
of the potential energy curve into the evaluation of conforma-
tional energies. The method, which involves the definition of a
variable that we term the colony energy, can be applied to any
problem involving the sampling of many different conforma-
tions. The colony energy is designed to become more negative
for conformations that have many neighbors with low rmsd. The
effectiveness of our approach is demonstrated with specific
applications to the problem of loop prediction in proteins.
Results obtained by using a very simple force field constitute an
improvement over the best results reported in the literature (13)
but at a fraction of the computational cost. For example, for
eight-residue loops, it takes about 20 min to achieve an average
accuracy of 1.45 Å.

Given the ability of the colony energy expression to improve
the accuracy of loop prediction, it is of interest to consider

Table 1. Loop prediction accuracy for 135 proteins

L 5 6 7 8 9 10 11 12

N 161 107 74 61 58 34 37 21
rmsd(a) 1.21 1.28 1.46 1.99 3.06 2.97 3.68 3.81
rmsd(b) 0.85 0.92 1.23 1.45 2.68 2.21 3.52 3.42
rmsd(c) 0.95 1.10 1.58 1.89 2.95 3.01 3.69 3.50

L is the number of residues in the loop. N is the number of loops. rmsd (a–c) are average values for all loops
of length N. rmsd(a), obtained from energy function without use of colony energy; rmsd(b), obtained with use
of colony energy expression; rmsd(c), obtained by using colony energy but with all side chains represented as
alanines.
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whether its success is based on some underlying physical prin-
ciple. The form of Eq. 8 is such that the colony energy does not
identify the global energy minimum but rather favors loop
candidates that not only have low energies but that also are
located in broad energy basins. An appealing explanation for its
effects is that the colony energy captures some elements of loop
flexibility and, hence, accounts for conformational entropy.
Entropy effects also can be estimated analytically from the
matrix of second derivatives of the energy (28). Another impor-
tant feature of the colony energy that is evident from the form
of the expression given in Eq. 8 is that it effectively smoothes out
the force-field energy, lowering the energy of high-energy con-
formations that are close in structure to low-energy conforma-
tions (this is the reason the colony energy vs. rmsd plots are so
smooth). A number of techniques are available to smooth the
energy surface so as to facilitate the search for the global
minimum (reviewed in refs. 29–31). In contrast, the colony
energy approach averages the conformational probability sur-
face directly. This averaging procedure has the effect of both
creating broad energy basins when many nearby states are
detected but also of keeping conformations whose high energy
is caused by inadequate sampling or random errors in the force
field. Such conformations are located in a low-energy region of
the potential energy surface (because they have a low energy
neighbor) and should not necessarily be discarded. Also, it is
possible that the colony energy corrects in some way for a
deficiency in the energy function we have used. In principle, one
might expect that the accuracy of our predictions would improve
if we used a more accurate force field, but this possibility still
needs to be tested. A much needed refinement is the addition of
electrostatic and solvation effects to the model we present.

Also, it is possible to view the colony energy as an effective
heuristic that favors conformations with many neighbors and
which improves loop prediction. Shortle et al. (32) used rmsds to
cluster low-energy conformations and found that those with the
largest number of neighbors tended to be closest to the native
conformation. This result was used to argue that native confor-
mations may be located in broad energy basins. The current work
is consistent with these ideas but, in addition, incorporates
features of the energy basin directly into the evaluation of the
conformational free energy. Huber and van Gunsteren (33)
reported the SWARM-MD method, which uses an rmsd-
dependent force to drive molecular dynamics trajectories toward
an average trajectory. This procedure has the effect of speeding
up convergence to the lowest energy conformation. In contrast,
the colony energy approach consists of a sampling procedure
that includes a bias toward probability-weighted clusters of states
which thus accounts for both conformational energy preferences
and for entropic effects. The approach is inherently fast because
the final prediction is based on the statistical distribution of all
of the initial conformations.

In the paper, we generated 2,000 loop candidates for each
loop. For short loops of less than 7 residues, 500 loop candidates
are enough to produce results of comparable accuracy, to within
about 0.1 Å to those reported here. For longer loops of more

Fig. 2. Colony energy analysis for loops 96–103 of 1c52, an electron trans-
port protein. Fig. 1 a and b captions also apply to Fig. 2 a and b, respectively.

Table 2. Prediction results for each of the eight residue loops

PDB entry Loop s d rmsd1 rmsd2

1cbn 18–25 24.09 12.67 1.18 1.04
1nls 97–104 11.51 8.79 1.30 0.81
1cex 73–80 11.78 13.32 0.92 0.87
1amm 69–76 15.06 15.71 1.79 1.85
1amm 81–88 16.78 13.72 3.10 1.92
1amm 158–165 12.45 15.44 1.19 1.15
1arb 136–143 14.24 16.13 2.02 2.01
1arb 212–219 16.59 12.89 0.48 0.86
1arb 249–256 18.08 9.68 1.68 1.62
1msi 26–33 16.42 9.79 2.47 2.16
7rsa 64–71 22.71 6.88 0.77 1.67
1c52 97–104 19.61 16.65 2.50 1.32
1rro 18–25 18.10 7.83 0.63 0.31
1aac 48–55 11.33 14.11 0.45 0.53
1plc 6–13 18.10 4.94 7.54 1.68
1plc 32–39 7.18 13.24 1.84 1.87
5ptp 22–29 8.25 12.85 2.13 1.79
5ptp 172–179 15.46 14.14 1.47 0.63
5p21 144–151 14.19 4.51 0.64 0.76
1rhs 235–242 20.52 14.72 0.44 0.92
1awd 56–63 16.23 12.04 1.33 1.21
2ctc 53–60 16.31 10.63 3.35 2.91
1aba 7–14 19.23 6.13 2.42 2.05
1vwj (chain B) 45–52 21.34 5.43 7.78 2.89
3seb 40–47 13.94 12.74 0.96 0.64
1brt 205–212 10.15 14.88 0.77 0.68
1ezm 92–99 14.25 16.95 0.52 0.96
1ezm 105–112 15.28 10.86 2.23 1.92
1kpf 105–112 8.90 12.78 2.51 2.44
1opd 8–15 14.04 10.79 3.37 0.43
2arc (chain A) 28–35 17.53 11.70 3.09 1.87
5icb 15–22 22.44 8.66 2.51 1.37
1a62 70–77 19.33 11.36 2.80 1.66
1a62 102–109 23.73 11.52 4.57 2.44
1lit 82–89 20.37 4.64 4.99 0.92
1ra9 51–58 17.60 14.93 2.52 2.27
1hfc 119–126 16.05 14.98 0.62 0.73
1nox 99–106 18.59 14.93 3.02 2.80
1a1h 107–114 26.55 5.92 2.70 0.68
1a3c 92–99 17.61 12.54 3.42 2.57
1ads 274–281 15.44 17.32 1.39 1.29
1aru 234–241 4.67 7.72 0.36 0.49
1btk (chain A) 67–74 18.98 16.86 2.46 2.11
1btk (chain A) 133–140 25.33 12.79 3.35 3.31
1cvl 148–155 17.85 10.40 1.74 1.40
1cvl 229–236 20.27 14.10 1.95 1.80
1dad 176–183 22.63 12.51 3.38 1.33
1dim 246–253 7.85 9.16 0.79 0.64
1mrp 68–75 10.26 19.99 0.66 0.57
1nfp 118–125 19.63 17.60 2.62 2.55
1nif 221–228 5.18 10.49 0.75 1.99
1nif 279–286 12.58 21.74 0.32 0.31
1nwp (chain A) 84–91 11.41 11.68 1.04 1.27
1ppn 101–108 16.33 19.89 0.60 0.46
1ppn 191–198 18.25 7.07 2.34 2.34
1wer 824–831 10.65 18.80 1.03 1.32
1wer 916–923 18.79 16.67 1.27 1.71
2ayh 124–131 17.09 12.89 0.59 0.61
2ayh 194–201 15.54 17.74 2.68 2.60
2dri 64–71 6.26 9.36 0.95 1.29
3nul 36–43 20.39 17.47 0.87 0.45

s, Percent exposure of the loop; d, distance between loop stems; rmsd1,
prediction accuracy in Å without colony energy; rmsd2, prediction accuracy in
Å with colony energy.

7436 � www.pnas.org�cgi�doi�10.1073�pnas.102179699 Xiang et al.



than 10 residues, 2,000 loop candidates seem not to be enough.
For example, prediction accuracy was improved from 3.42 to 3.25
Å when 4,000 instead of 2,000 initial loop candidates were used
for 12 residue loops (data not shown). However, using 6,000
initial loop candidates for 12 residue loops led to a slight
decrease (0.1 Å) in prediction accuracy relative to the use of
4,000 candidates. The major problem, as discussed above, is
likely to be inadequacies in the potential function whose effects
become more noticeable for longer loops with fewer geometric
constraints.

We anticipate that the colony energy concept will prove useful
in many other applications, such as side-chain prediction and
homology model building. Different expressions for �ij would

probably have to be used and indeed, for loop prediction, it may
be empirically possible to obtain expressions for �ij that depend
on the properties of the loop being treated. Thus, although the
approach presented in this work has been quite successful in
applications to loop prediction, future developments may make
it possible to obtain even better results in this and other
applications.

We thank Drs. Matthew Jacobson, Avinoam Ben-Shaul, Richard
Friesner, Joon Jung, Emil Alexov, Jan Norberg, and Lei Xie for many
stimulating discussions and for their insightful comments on the manu-
script. This work was supported by National Institutes of Health Grant
GM-30518.

1. Greer, J. (1980) Proc. Natl. Acad. Sci. USA 77, 3393–3397.
2. Ring, C. S., Kneller, D. G., Langridge, R. & Cohen, F. E. (1992) J. Mol. Biol.

224, 685–699.
3. Tramontano, A. & Lesk, A. M. (1992) Proteins 13, 231–245.
4. Kwasigroch, J. M., Chomilier, J. & Mornon, J. P. (1996) J. Mol. Biol. 259, 855–872.
5. Donate, L. E., Rufino, S. D., Canard, L. H. & Blundell, T. L. (1996) Protein Sci.

5, 2600–2616.
6. Oliva, B., Bates, P. A., Querol, E., Aviles, F. X. & Sternberg, M. J. (1997) J.

Mol. Biol. 266, 814–830.
7. Wojcik, J., Mornon, J. P. & Chomilier, J. (1999) J. Mol. Biol. 289, 1469–1490.
8. Chothia, C. & Lesk, A. M. (1987) J. Mol. Biol. 196, 901–917.
9. Martin, A. C. & Thornton, J. M. (1996) J. Mol. Biol. 263, 800–815.

10. Fidelis, K., Stern, P. S., Bacon, D. & Moult, J. (1994) Protein Eng. 7, 953–960.
11. Deane, C. M. & Blundell, T. L. (2001) Protein Sci. 10, 599–612.
12. Van Vlijmen, H. W. & Karplus, M. (1997) J. Mol. Biol. 267, 975–1001.
13. Fiser, A., Do, R. & Sali, A. (2000) Protein Sci. 9, 1753–1773.
14. Go, N. & Scheraga, H. A. (1970) Macromolecules 3, 178–187.
15. Bruccoleri, R. E. & Karplus, M. (1990) Biopolymers 29, 1847–1862.
16. Rapp, C. S. & Friesner, R. A. (1999) Proteins 35, 73–83.
17. Shenkin, P. S., Yarmush, D. L., Fine, R. M., Wang, H. J. & Levinthal, C. (1987)

Biopolymers 26, 2053–2085.

18. Collura, V., Higo, J. & Garnier, J. (1993) Protein Sci. 2, 1502–1510.
19. Wedemeyer, W. & Scheraga, H. A. (1999) J. Comp. Chem. 20, 819–844.
20. Smith, K. C. & Honig, B. (1994) Proteins 18, 119–132.
21. Galaktionov, S., Nikiforovich, G. V. & Marshall, G. R. (2001) Biopolymers 60,

153–168.
22. Greiner, W., Stocker, H. & Neise, L. (1995) Thermodynamics and Statistical

Mechanics (Springer, Berlin).
23. Stickle, D. F., Presta, L. G., Dill, K. A. & Rose, G. D. (1992) J. Mol. Biol. 226,

1143–1159.
24. Mackerell, A. D., Jr. (1998) J. Phys. Chem. B 102, 3586–3616.
25. Kabsch, W. & Sander, C. (1983) Biopolymers 22, 2577–2637.
26. Vriend, G. (1990) J. Mol. Graphics 8, 52–56.
27. Xiang, Z. & Honig, B. (2001) J. Mol. Biol. 311, 421–430.
28. Go, N. & Scheraga, H. A. (1969) J. Chem. Phys. 51, 4751–4767.
29. Wales, D. J. & Scheraga, H. A. (1999) Science 285, 1368–1372.
30. Pappu, R. V., Marshall, G. R. & Ponder, J. W. (1999) Nat. Struct. Biol. 6, 50–55.
31. Pillardy, J. & Piela, L. (1997) J. Comput. Chem. 18, 2040–2049.
32. Shortle, D., Simons, K. T. & Baker, D. (1998) Proc. Natl. Acad. Sci. USA. 95,

11158–11162.
33. Huber, T. & van Gunsteren, W. F. (1998) J. Phys. Chem. A 102, 5937–5943.

Xiang et al. PNAS � May 28, 2002 � vol. 99 � no. 11 � 7437

BI
O

PH
YS

IC
S


