Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1992 May;215(5):536–545. doi: 10.1097/00000658-199205000-00017

Cytokine modulation of Na(+)-dependent glutamine transport across the brush border membrane of monolayers of human intestinal Caco-2 cells.

W W Souba 1, E M Copeland 1
PMCID: PMC1242493  PMID: 1616390

Abstract

Previous studies have demonstrated that Na(+)-dependent brush border glutamine transport is diminished in septic patients. To examine the potential regulation of this decreased transport by endotoxin, cytokines, or glucocorticoids, the human intestinal Caco-2 cell line was studied in vitro. Na(+)-dependent glutamine transport across the apical brush border membrane was assayed in confluent monolayers of differentiated cells that were 10 days old. Uptake of 50 microM glutamine was determined after a 12-hour incubation with varying doses (10 to 1000 U/mL) of tumor necrosis factor-alpha, interleukin-1, interleukin-6, interferon-gamma, and various combinations of these cytokines. Studies were also done in cells incubated with E. coli endotoxin (1 micrograms/mL) or dexamethasone (1 and 10 microM). Endotoxin, tumor necrosis factor, interleukin-1, and interleukin-6 alone and in combination did not significantly reduce Na(+)-dependent glutamine transport across the brush border of Caco-2 cells. Dexamethasone decreased glutamine transport by 20%, but this decrease was not apparent for 48 hours. Interferon consistently decreased glutamine transport by 30%; this was due to a reduction in carrier maximal transport velocity (3427 +/- 783 pmol/mg protein/minute in controls versus 2279 +/- 411 in interferon, p less than 0.05) rather than a change in Km (276 +/- 29 microM in controls versus 333 +/- 74 in interferon, p = not interferon + dexamethasone + tumor necrosis factor + interleukin-1 resulted in a 38% decrease in transport activity. Cytokines and glucocorticoids may work independently and synergistically in regulating Na(+)-dependent brush border glutamine transport in human intestinal cells. Whether these signal molecules play a central role in the cause of the diminished brush border glutamine transport that occurs in septic patients requires further study.

Full text

PDF
536

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blais A., Bissonnette P., Berteloot A. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J Membr Biol. 1987;99(2):113–125. doi: 10.1007/BF01871231. [DOI] [PubMed] [Google Scholar]
  2. Chantret I., Barbat A., Dussaulx E., Brattain M. G., Zweibaum A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 1988 Apr 1;48(7):1936–1942. [PubMed] [Google Scholar]
  3. Decker T., Kiderlen A. F., Lohmann-Matthes M. L. Liver macrophages (Kupffer cells) as cytotoxic effector cells in extracellular and intracellular cytotoxicity. Infect Immun. 1985 Nov;50(2):358–364. doi: 10.1128/iai.50.2.358-364.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fogh J., Fogh J. M., Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977 Jul;59(1):221–226. doi: 10.1093/jnci/59.1.221. [DOI] [PubMed] [Google Scholar]
  5. Gazzola G. C., Dall'Asta V., Franchi-Gazzola R., White M. F. The cluster-tray method for rapid measurement of solute fluxes in adherent cultured cells. Anal Biochem. 1981 Aug;115(2):368–374. doi: 10.1016/0003-2697(81)90019-1. [DOI] [PubMed] [Google Scholar]
  6. Green J. A., Cooperband S. R., Kibrick S. Immune specific induction of interferon production in cultures of human blood lymphocytes. Science. 1969 Jun 20;164(3886):1415–1417. doi: 10.1126/science.164.3886.1415. [DOI] [PubMed] [Google Scholar]
  7. Hauri H. P., Sterchi E. E., Bienz D., Fransen J. A., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herskowitz K., Bode B. P., Block E. R., Souba W. W. Characterization of L-glutamine transport by pulmonary artery endothelial cells. Am J Physiol. 1991 Apr;260(4 Pt 1):L241–L246. doi: 10.1152/ajplung.1991.260.4.L241. [DOI] [PubMed] [Google Scholar]
  9. Hidalgo I. J., Borchardt R. T. Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2. Biochim Biophys Acta. 1990 Sep 21;1028(1):25–30. doi: 10.1016/0005-2736(90)90261-l. [DOI] [PubMed] [Google Scholar]
  10. Hidalgo I. J., Kato A., Borchardt R. T. Binding of epidermal growth factor by human colon carcinoma cell (Caco-2) monolayers. Biochem Biophys Res Commun. 1989 Apr 14;160(1):317–324. doi: 10.1016/0006-291x(89)91658-6. [DOI] [PubMed] [Google Scholar]
  11. Hidalgo I. J., Raub T. J., Borchardt R. T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989 Mar;96(3):736–749. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Mohrmann I., Mohrmann M., Biber J., Murer H. Sodium-dependent transport of Pi by an established intestinal epithelial cell line (CaCo-2). Am J Physiol. 1986 Mar;250(3 Pt 1):G323–G330. doi: 10.1152/ajpgi.1986.250.3.G323. [DOI] [PubMed] [Google Scholar]
  14. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rousset M., Laburthe M., Pinto M., Chevalier G., Rouyer-Fessard C., Dussaulx E., Trugnan G., Boige N., Brun J. L., Zweibaum A. Enterocytic differentiation and glucose utilization in the human colon tumor cell line Caco-2: modulation by forskolin. J Cell Physiol. 1985 Jun;123(3):377–385. doi: 10.1002/jcp.1041230313. [DOI] [PubMed] [Google Scholar]
  16. Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie. 1986 Sep;68(9):1035–1040. doi: 10.1016/s0300-9084(86)80177-8. [DOI] [PubMed] [Google Scholar]
  17. Rousset M., Trugnan G., Brun J. L., Zweibaum A. Inhibition of the post-translational processing of microvillar hydrolases is associated with a specific decreased expression of sucrase-isomaltase and an increased turnover of glucose in Caco-2 cells treated with monensin. FEBS Lett. 1986 Nov 10;208(1):34–38. doi: 10.1016/0014-5793(86)81526-5. [DOI] [PubMed] [Google Scholar]
  18. Said H. M., Van Voorhis K., Ghishan F. K., Abumurad N., Nylander W., Redha R. Transport characteristics of glutamine in human intestinal brush-border membrane vesicles. Am J Physiol. 1989 Jan;256(1 Pt 1):G240–G245. doi: 10.1152/ajpgi.1989.256.1.G240. [DOI] [PubMed] [Google Scholar]
  19. Salloum R. M., Copeland E. M., Souba W. W. Brush border transport of glutamine and other substrates during sepsis and endotoxemia. Ann Surg. 1991 May;213(5):401–410. doi: 10.1097/00000658-199105000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Salloum R. M., Stevens B. R., Souba W. W. Adaptive regulation of brush-border amino acid transport in a chronic excluded jejunal limb. Am J Physiol. 1991 Jul;261(1 Pt 1):G22–G27. doi: 10.1152/ajpgi.1991.261.1.G22. [DOI] [PubMed] [Google Scholar]
  21. Shotwell M. A., Kilberg M. S., Oxender D. L. The regulation of neutral amino acid transport in mammalian cells. Biochim Biophys Acta. 1983 May 24;737(2):267–284. doi: 10.1016/0304-4157(83)90003-5. [DOI] [PubMed] [Google Scholar]
  22. Snyers L., De Wit L., Content J. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2838–2842. doi: 10.1073/pnas.87.7.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Souba W. W., Herskowitz K., Klimberg V. S., Salloum R. M., Plumley D. A., Flynn T. C., Copeland E. M., 3rd The effects of sepsis and endotoxemia on gut glutamine metabolism. Ann Surg. 1990 May;211(5):543–551. doi: 10.1097/00000658-199005000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Souba W. W., Klimberg V. S., Plumley D. A., Salloum R. M., Flynn T. C., Bland K. I., Copeland E. M., 3rd The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. J Surg Res. 1990 Apr;48(4):383–391. doi: 10.1016/0022-4804(90)90080-l. [DOI] [PubMed] [Google Scholar]
  25. Souba W. W., Salloum R. M., Bode B. P., Herskowitz K. Cytokine modulation of glutamine transport by pulmonary artery endothelial cells. Surgery. 1991 Aug;110(2):295–302. [PubMed] [Google Scholar]
  26. Stevens B. R., Ross H. J., Wright E. M. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J Membr Biol. 1982;66(3):213–225. doi: 10.1007/BF01868496. [DOI] [PubMed] [Google Scholar]
  27. Stevens B. R., Wright S. H., Hirayama B. S., Gunther R. D., Ross H. J., Harms V., Nord E., Kippen I., Wright E. M. Organic and inorganic solute transport in renal and intestinal membrane vesicles preserved in liquid nitrogen. Membr Biochem. 1982;4(4):271–282. doi: 10.3109/09687688209065436. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES