Skip to main content
. 2025 Aug 28;17(17):2813. doi: 10.3390/cancers17172813
Algorithm 2 Adaptive Threshold Search for APA Optimization
  •   1:

    Inputs:    Electric field matrix EN, input power P0, reference input resistance R0, tumor region T with radius rt, healthy region H with radius rh

  •   2:

    Fixed Gaussian peak amplitude A0 at tumor center (xt,yt,zt) with the maximum achievable intensity

  •   3:

    Candidate set {thup(i)} to control hotspot suppression

  •   4:

    Outputs:    Optimal excitation vector b˜ and selected threshold thup

  •   5:

    Determine the dominant polarization component ν of EN

  •   6:

    for each thup(i) in candidate set do

  •   7:

        Compute standard deviation σ0=rh2logA0/thup(i)1/2

  •   8:

        Compute thlow(i)=A0·exprt2/(2σ02)

  •   9:

        Construct Gaussian field Et with parameters A0 and σ0 and polarization ν

  • 10:

        Run APA Optimization (Algorithm 1) with (Et,thlow(i),thup(i))

  • 11:

        Compute metrics V10%H and V50%H

  • 12:

        Store results in Q(thup(i),V10%H,V50%H)

  • 13:

    end for

  • 14:

    Identify thup via Pareto trade-off between V10%H and V50%H

  • 15:

    Return corresponding excitation vector b˜