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Transient forces between nanoscale objects on surfaces govern
friction, viscous flow, and plastic deformation, occur during ma-
nipulation of matter, or mediate the local wetting behavior of thin
films. To resolve transient forces on the (sub) microsecond time and
nanometer length scale, dynamic atomic force microscopy (AFM)
offers largely unexploited potential. Full spectral analysis of the
AFM signal completes dynamic AFM. Inverting the signal formation
process, we measure the time course of the force effective at the
sensing tip. This approach yields rich insight into processes at the
tip and dispenses with a priori assumptions about the interaction,
as it relies solely on measured data. Force measurements on silicon
under ambient conditions demonstrate the distinct signature of
the interaction and reveal that peak forces exceeding 200 nN are
applied to the sample in a typical imaging situation. These forces
are 2 orders of magnitude higher than those in covalent bonds.

T ime-dependent forces mediate adsorption, ordering phe-
nomena, and visco-elasticity that are important in rheology

and tribology, as well as in biology and catalysis. The importance
of dynamic aspects becomes obvious when looking at the vis-
coelastic properties of polymers (1, 2). Even on the level of a
single biomolecule under external stress, velocity dependence
can be observed: the stability of the molecule increases with the
applied force rate (3). However, dynamic forces occurring during
processes at surfaces, in thin and confined lubrication films, or
on the level of nanoscopic objects are experimentally not easily
accessible.

In this context, atomic force microscopy (AFM) offers a large
potential to investigate and manipulate material at the (sub)
microsecond time scales and nanometer length scale. AFM (4)
and related techniques (5) have gained increasing importance in
many fields of research and industrial applications. Raster
scanning the sample with a sharp tip attached to the end of the
microfabricated cantilever allows not only the visualization of
objects in shape and size of single molecules, but also the ability
to touch and squeeze, pull and push them (6). In dynamic force
microscopy, the motion of the cantilever is externally modulated.
In tapping-mode AFM, the most common dynamic mode, the
cantilever is excited to oscillate at its fundamental resonant
frequency. Once each oscillation cycle, the tip interacts with the
surface, and information about the tip-sample interaction is
transferred into the time course of the signal. The signal
formation process is depicted in Fig. 1, and the inset shows
schematically the setup of tapping-mode AFM.

To obtain the acting forces from the dynamics of the oscillating
cantilever, there are basically two routes. First, under ultra high
vacuum conditions, the change of the resonant frequency of the
force-coupled cantilever is used to estimate the interaction
potential (7–9). These methods highly depend on the high quality
factor of the oscillation under ultra high vacuum. Second, under
ambient conditions, the tip-sample interaction is commonly
estimated under the assumption of a disturbed harmonic oscil-
lation using contact mechanical models where the choice of the
‘‘best model’’ is crucial (10–15). These approaches are based
mostly on forward simulations requiring vast a priori knowledge
about the interaction. Approximations are inevitable for systems

of complex materials such as polymers, layered material, or
biological specimens. Dynamic effects such as viscous flow,
capillary formation, or the rearrangement of surface charges
provide a further challenge.

Complementary to the forward simulation of the cantilever
motion, we present a backward signal analysis approach to
determine the force directly from the measured signal. It is
exactly the information in anharmonic signal contributions that
encodes the duration and the strength of the interaction (16–22):
the nonlinear interaction generates higher harmonics of the
fundamental oscillation, resonantly enhanced to significant sig-
nal contributions by higher eigenmode excitation. To measure
the full time course of the interaction force at the sensing tip we
decode this information by inverting the signal formation pro-
cess. Thus, the effective force at the tip during each single
tip-sample interaction event is entirely reconstructed from mea-
sured data without a priori assumptions concerning acting forces.
We present time-resolved and quantitative data on the interac-
tion forces in a typical tapping-mode AFM experiment under
ambient conditions.

Theoretical Considerations
Conceiving the AFM as a sensor, information about the tip-
sample interaction is transferred into the deflection signal as
sketched in the flow diagram of Fig. 1. The force distribution
f(x, t), with position x along the cantilever and time t, acts as
input signal into the sensor. This force deflects the cantilever
(linear operator G) resulting in the bending shape �(x, t), as
described by the equation of motion, G�(x, t) � f(x, t). At this
point, the flow diagram exhibits two branches as indicated in Fig.
1. The nonlinear circuit (lower part) corresponds to the inter-
action: �(x, t) determines the tip-sample separation that enters
the nonlinear force law of the interaction, and thus couples back
on the force distribution f(x, t). In contrast, the measurement of
the cantilever motion relies on a second, here linear path,
wherein the linear and bijective operator C represents the
detection (i.e. the photodiode and the electronics). It converts
the bending shape �(x, t) into the signal s(x�, t) according to
s(x�, t) � C�(x, t). Briefly, the AFM as linear sensor detects
nonlinear forces acting at its tip.

For both the operators G and C, linearity¶ is an appropriate
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¶Linearity of the operators is assumed in both position x and time t. Equivalent with the
assumption of linearity is the existence of an orthogonal eigensystem: the measured
bending shape can be decomposed into these eigenmodes, and the harmonic expansion
is appropriate concerning the time course. E.g., in the widely used Euler–Bernoulli ap-
proximation, a homogenous, and undamped oscillating cantilever beam is described by
G � ��4��x4 � ��2��t2, where � and � denote cantilever properties (23, 24). Direct
measurements of the bending shapes revealed good agreement with an adapted Euler–
Bernoulli approximation (25). On the side of the detection, the common case of optical
beam detection is described by the operator C � �(���x) taken at the position x� along
the cantilever, hence s(x�, t) � �(���x)�(x, t)�x � x� with sensitivity �.
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assumption in the case of a typical AFM experiment, where
cantilever deflections from equilibrium shape remain small, and
only waves traveling on the cantilever with wavelengths above
0.1l (with cantilever length l) have to be considered (23). Under
these conditions, the linear equation

GC � 1s�x�, t� � f�x, t� [1]

governs signal formation in dynamic AFM. Operator GC�1 maps
the time course of the signal into the time course of the force.
Especially, one physical value is mapped on exactly one signal
value, and vice versa, which is an important requirement for a
sensor.

Linearity of the operator GC�1 allows describing dynamic
AFM in the framework of linear response theory, e.g., ref. 26.
For calculation, an appropriate and complete set of orthogonal
functions is chosen to describe both the linear operator GC�1

and the functions. In Fourier space, the complex-valued and
dimensionless transfer function T(x, x�, �) is one representation
of the inverse of operator GC�1. Here, the description in Fourier
space seems favorable because it is well adapted to the problem
and leads to a concise formalism. This choice does not imply that
only repetitive processes can be analyzed, and other choices are
possible, e.g., the Laplace transform (26, 27). Notably, allowed
force distributions at the input include Dirac’s delta distribution
	(�), defined by g(
) � ���

	�	(
 � 
�)g(
�)d
�, where 
 takes the
role of time t or position x. Indeed, T(x, x�, �) is defined to be
the response of the system to F(�) � 1 for all �, which is the
Fourier transform of the delta distribution.

Given a certain force distribution as input, the response of the
AFM to that force is given by

S�x�, �� � u�
0

l

F�x, ��T�x, x�, ��dx. [2]

Here, l denotes the length of the cantilever, � the angular
frequency, and capital letters indicate Fourier-transformed
quantities (signal S and force F). In the notation of Eq. 2, the
transfer function is normalized to the static case, i.e. �T(x, x�, � �
0)� � 1, and the scaling coefficient u carries the dimensions.

Usually, the deflection is measured at one fixed position only,
i.e. S(�) � S(x� � xlaser, �), and the force acting right at the tip
clearly dominates the force distribution,� i.e., F(x, �) 
 F(x �
xtip, �) :� F(�). Thus, the reduced transfer function T(�) �
T(x � xtip, x� � xlaser, �) suffices to calculate the force at xtip from

F��� �
1
u

T � 1���S���. [3]

For Eq. 3 to hold, T(�) must be a single-valued function with
�T(�)� � 0 for all frequencies: the process of measurement must
neither erase information nor render it ambiguous. In the
outlined analysis, the signal is subjected to a linear transforma-
tion, defined by the transfer function. No information contained
in the signal is rejected, and no approximation is applied to the
signal. In practice, noise degrades information about the time
course of the force, and the analysis has to exclude frequency
bands with unreliable information. Critical frequency bands are
those with �T(�)� �� 1 and strongly depend on the type of
cantilever used. In these frequency bands, signal contributions
can fall below the effective noise level introduced by the
detection electronics. A further important issue is the question
of negligibility of small signal contributions. In frequency bands
with �T(�)� �� 1, the signal amplitude at a higher harmonic can
be small compared to the signal at the fundamental frequency,
but the corresponding information content can be important.
This becomes clear considering an input F(�)  1 for all �,
where the response equals T(�): Even though this input pos-
sesses homogeneous information content over all frequencies,
the maximal and minimal signal contributions will differ by
several orders of magnitude according to T(�). Thus, the mere
‘‘smallness’’ of a signal contribution does not justify its
neglection.

To reconstruct the time course of the force from the time
series of the deflection signal obtained in the experiment,
knowledge of the transfer function T(�) is essential. Inversion of
Eq. 3 defines a measurement procedure, where a well-defined
force input F̂(�) containing all frequencies is exerted on the tip
of the free cantilever. From the recorded response Ŝ(�), the
transfer function is calculated by T(�) � Ŝ(�)�F̂(�).

Materials and Methods
Experimental Details. A Nanoscope Multimode IIIa (Veeco�
Digital Instruments, Santa Barbara, CA) was used with external
amplification of the deflection signal (SR560, Stanford Re-
search, Sunnyvale, CA) that was recorded at 5 M sample�s (NI
PCI-6110E, National Instruments, Austin, TX). The spring
constant 3.8 � 0.4 N�m of the v-shaped Si-cantilever (200 �m
length; type NSCH 11, Silicon-MDT, Moscow) was determined
by standard thermal-noise calibration (28). The two samples
investigated were: silicon (100) waver with natural oxide layer
(Wacker Chemie, Burghausen, Germany), and polytetrafluoro-
ethylene (PTFE) foil (GM Gummi and Kunststoffe, Munich),
glued to a sample mount. Both samples were cleaned with
ethanol and ultrapure water before use. The transfer function
was calculated on the basis of the average of 87 rupture events,
with imaginary and real parts locally smoothed by cubic func-
tions. The reconstruction used a sliding Fourier transform
algorithm. In a first step, a subset of 32,768 data points was
extracted from the full time series of 448,668 data points by using
a windowing function with Gaussian flanks. In the second step,
the subset was Fourier-transformed. Contributions �S(�)� �
�3L(�)� were identified as signal, and a steep weight function
[5% at 2L(�)] suppressed frequency ranges with unreliable

�Linearity of the operators in x and x� provides that the reduced treatment can be defined
under any physical relevant force distribution.

Fig. 1. The flow diagram represents dynamic AFM, the setup is sketched in
the Inset. Conceiving the AFM as sensor, it converts the force input f(x, t) into
the signal output s(x, x�, t) in a linear manner (upper branch; t time, x position
of the acting force, x� position of measurement). The interaction between tip
and sample obeys a nonlinear force-distance relation (lower, back-coupled
branch). Physically, the cantilever is externally excited to oscillate and interacts
once every cycle with the sample that is mounted on a scan-piezo. The
deflection of the cantilever is measured by a laser, reflected from the backside
of the cantilever onto a position-sensitive photodiode.
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information content. Here, L(�) denotes the noise level, esti-
mated from the Fourier spectrum (see Fig. 2B) excluding the
harmonics, in which the periodic signal is concentrated. Eq. 3
was applied, and an additional low-pass filter with Gaussian
flank limited the bandwidth to 733 kHz accounting for uncer-
tainties in the transfer function. In the third step, the subset was
retransformed into the time domain. The resulting curve rep-
resents force vs time. To minimize boundary effects, the impact
event in the middle of the curve was extracted corresponding to
one tapping cycle (i.e., �108 data points). For iterating the
procedure, the initial windowing function was shifted by one
tapping cycle. Finally, the full curve force vs time was composed
from the extracted events avoiding overlap. This algorithm
ensures that each single impact event is addressed while bound-
ary effects are minimized.

Single-Degree-of-Freedom Simulation. The cantilever is described
as an impacting harmonic oscillator, where the tip-sample
contact was modeled (R.W.S., unpublished work) in a well-
established Derjaguin–Müller–Toporov (DMT) approach, fol-
lowing ref. 15. With the transformation t� � t�1, the equation of
motion is given by

z̈ �
1
Q

ż � z � Adrivesin�t�� �
Fts�z�

k
, [4]

with the DMT tip-sample force

Fts�z� � ��
HR

6�z � zsample�
for z � zsample � a0

�
HR
6a0

2 � k�R�z � zsample � a0� else,

[5]

where z is the position. All parameters are denoted and their
values are listed in Table 1. The simulation was implemented
with MATLAB R12 (Mathworks, Natick, MA) using SIMULINK. The
simulations were integrated with ode23s, which is an implemen-
tation of an explicit Runge–Kutta (2,3) pair of Bogacki and
Shampine.

Measuring the Transfer Function
Measuring the transfer function is crucial to describe the actual
situation. Otherwise, assumptions are necessary about the spe-
cific cantilever, the current adjustment of the deflection readout,
and the setting of the electronics, so the reconstructed forces
become unreliable. Here, we measured the transfer function in
the last step of the whole experiment, avoiding early damage of
the tip. To determine the transfer function, quasi-static force
curves (no excitation of the cantilever) were performed on
double-sided adhesive tape, generating a step function with
well-known step height as input on the cantilever. Retracting the
cantilever from the surface, the adhesion ruptures, and the tip is
released. This rupture event defines the step (330 nN in the case
presented). The transfer function derived by this procedure
describes the response of the AFM to forces effective right at the
tip and the resulting deflection measured at a fixed second
position. A background of viscous damping and long-range
forces along the cantilever is conceived as internal force of the
AFM system and automatically incorporated into the transfer
function. Fig. 2 A depicts magnitude and phase of the smoothed
transfer function of the AFM. Clearly visible are the resonances
of the first four eigenmodes of the cantilever at 46.2 kHz, 247
kHz, 581 kHz, and 1,051 kHz. Comparing the transfer function
with the signal amplitude spectrum of Fig. 2B, the enhancement
of harmonic contributions caused by higher eigenmode excita-
tion becomes evident.

Overview of the Measured Data and Simulation
In our experiment the deflection signal was recorded during
tapping mode (i.e., cantilever excitation at its fundamental
resonance �1 � 2 46.2 kHz) approach curves on silicon and
PTFE under ambient conditions. With the transfer function
determined under identical conditions, we finally reconstructed
the time course of the force according to Eq. 3.

For the case of silicon, Fig. 3 summarizes important aspects of
the approach curve in dependence of the piezo displacement.
For orientation, the amplitude A1 at �1 is given in Fig. 3E. It
decreases linearly with decreasing mean tip-sample distance.
Signal amplitudes at selected frequencies are depicted in Fig. 3A.
The fifth harmonic is close to the resonance of the second
vertical eigenmode, while the 12th harmonic is associated to

Fig. 2. In the framework of linear response theory, the conversion of input
into output is described by the transfer function of the AFM. (A) The transfer
function was measured for the used configuration with a bandwidth of 1.2
MHz. Eigenmode resonances of this multimodal resonator are indicated. (B)
The depicted amplitude spectrum of the signal (normalized to the free oscil-
lation) was obtained on silicon at an average tip-sample separation corre-
sponding to 44.6% of the free amplitude. The periodic contact of the AFM tip
with the silicon sample introduces higher harmonics that couple to the eigen-
mode resonances. In general, eigenmodes resonances are not harmonics of
the fundamental oscillation. Note the noise level.

Table 1. Parameters used for the simulation

Quality factor Q � 30
Free vibration amplitude A0 � 45 nm
Resonant frequency �0 � 2 46.2 kHz
Spring constant k � 3.8 N�m
Tip radius R � 30 nm
Drive amplitude Ad � A0�Q
Drive frequency �d � �0

Dimensionless time t� � t �0 � 103

Elastic moduli (Si) Et � Es � 169 GPa
Poisson number (Si) �t � �s � 0.28 GPa
Hamaker constant (SiO2) H � 6.4�10 � 11 nJ
Surface energy (SiO2) � � 0.031 J�m�2

Interatomic distance a0 � �(H�2�)

The elastic behavior of tip and sample is modeled by the values for bulk-
silicon, whereas the values for SiO2 are used for the surface energy and the
Hamaker constant modeling the natural oxide layer.
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eigenmode 3: their appearance proves the excitation of higher
eigenmodes upon tip-sample interaction and confirms earlier
results (19, 20). Additionally, the amplitude at 0.5 �1 marks the
regime of period doubling (29). All amplitudes are normalized
to the free amplitude (42 nm). Further graphs in Fig. 3 show peak
and average forces (fmin, fmax, and �f�, respectively), as well as the
average duration of the interaction ��� (determined by thresh-
olding at �12 nN) for each tapping cycle. Three distinct regions
occur, where peak forces remain almost constant, while transi-
tions become prominent in two further regions, all marked in
Fig. 3. Forces are small in the case of the freely oscillating
cantilever (up to 41.6 nm piezo displacement). Negative forces
mark the onset of attractive interaction. In this regime, the
interaction lasts around 7% of the cycle time (22 �s). The onset

of contact leads to the appearance of repulsive contributions,
and changes in duration and spectral composition of the impact.
Above 61 nm piezo displacement, repulsive forces exceed 200 nN
and indicate mechanical contact. At the same time, the average
force changes to positive values around 2 nN, and the interaction
lasts more than 20% of the whole tapping cycle. Period-doubled
behavior is embedded in the predominantly repulsive regime.

To cross-check these results with current models for tapping-
mode AFM (11, 12, 30) we performed a single-degree-of-
freedom simulation following ref. 15. There, the cantilever is
modeled as an impacting harmonic oscillator. Parameters are
chosen to match the experimental situation as detailed in Table
1, especially concerning the cantilever used in the experiment.
The tip-sample contact is modeled with a Derjaguin–Müller–
Toporov approach for a tip of 30 nm radius. The simulated
average and maximal forces (Fig. 4) agree reasonably well with
the experimental data (Fig. 3). Notably, the simulation reveals
peak forces in the range of 200 nN, which occurred also in the
measured data.

In contrast, the simulated minimum forces (Fig. 4B) differ
remarkably from the measurement, because the model completely
ignores the influence of dissipative surface forces. Furthermore, the
simulation considers only the fundamental mode, and thus cannot
account for higher eigenmode excitation. It lacks dynamic surfaces
forces and relies on a priori assumptions concerning the set of
parameters. Nevertheless, such a model is useful to estimate general
aspects of a dynamic AFM experiment.

Time-Resolved Dynamic AFM
Complementary to the simulation, the time-resolved signal
analysis outlined before offers detailed insight into the time
course of the tip-sample interaction.

Fig. 5A shows force f(t) and signal s(t) of typical impact events;
the full time series is available as Movie 1, which is published as
supporting information on the PNAS web site, www.pnas.org.
Clearly, the impact events reach high peak forces and are

Fig. 3. Several parameters are shown, characterizing the tapping-mode
approach curve on silicon under ambient conditions. (A) Signal amplitudes A5

and A12 (fifth and 12th harmonic to the fundamental frequency �1 � 2 46.2
kHz, respectively) indicate excitation of vertical eigenmodes 2 and 3, the
appearance of contributions at 0.5 �1 marks period doubling. (B) Maximal
forces fmax reach 	200 nN (repulsive force), whereas minimal forces fmin

(attractive force) become more pronounced with the onset of mechanical
contact (�40 nN to �100 nN). (C) Along with this transition, the force aver-
aged over one cycle �f� changes sign, but remains within �2 nN. (D) The
average duration of the interaction ��� increases from 7% for purely attractive
interaction to more than 25% for repulsive dominated interaction. (E) For
orientation, the amplitude A1 at the excitation frequency �1 is given. It
decreases linearly with decreasing mean tip-sample distance. The distinct
regimes and transitions are marked i–v. The arrows point to the positions
where the events of Fig. 5A were taken.

Fig. 4. Approach curves simulated with a single degree of freedom based on
a Derjaguin–Müller–Toporov contact model (with the parameters given in
Table 1.) are shown vs. the tip-sample separation. (A) Forces averaged over one
cycle reach approximately 2 nN. (B) Maximum and minimum forces ( fmax and
fmin, respectively) were determined by a peak detection algorithm. While the
maximum forces fits reasonable well to the experimental data, the minimum
forces (i.e., the attractive forces) deviate remarkably from the experiment: the
simulation does not account for the dissipative forces occurring in the exper-
iment. (C) The depicted tapping amplitude A was derived from the peak-to-
peak values.
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strongly concentrated in their time course, leading to small
average forces.

The events depicted in Fig. 5A are taken from the positions
marked in Fig. 3E and are representative for the different
regimes: (i) free oscillation, (ii) purely attractive interaction,
(iii) onset of mechanical contact, (iv) predominantly repulsive
interaction, and (v) period doubling. All curves are corrected for
the external excitation that resulted in a sinusoidal force with 5
nN amplitude at the tip, as concluded from the case of free
oscillation. The limited bandwidth underestimates peak heights
and leads to smoothing of fast events. Thus, the reconstructed
time course represents a lower limit. Comparing the impact
events on silicon and PTFE (excitation reduced to 75% com-
pared to the case of silicon) clearly demonstrates material
specificity (Fig. 5B; note the scales). The asymmetry in the case
of PTFE is striking (see * in Fig. 5B), and peak forces reach only
25% of those on silicon. This comparison indicates the pro-
nounced influence of surface wetting on silicon by a water film
(31–33), leading to attractive forces caused by the formation of
a liquid neck between tip and sample during each cycle (34).

The observed signature of the impacts reflects the nonlinear
interaction, sampled by the tip in each cycle, similar to quasi-
static force curves. Nevertheless, with far more than 100 nN peak
force the tip-sample interaction is not gentle, e.g. binding forces
in covalent bonds are 2 orders of magnitude smaller (35). Even
purely attractive forces reach �40 nN.

To avoid structural breakdown, the impact force has to be
distributed over a large number of bonds. For estimation, we
assume Hertzian contact mechanics, where the contact area is
given by

A � � RF
Eeff

	2/3

. [6]

Here, R denotes the tip radius, F the impact force, and Eeff the
effective tip-sample stiffness. The latter parameter describes the
material properties of tip and sample. With the respective
material parameters (Table 1) the effective tip-sample stiffness
is given by

Eeff � 
3
4 �1 � vtip

2

Etip
�

1 � vsample
2

Esample
	��1

. [7]

For a tip of 30 nm radius, an impact force of 200 nN, and with
the material parameters given in Table 1, the estimated contact
area is 23 nm2, i.e., �40 unit cells on each side of the contact,
and hence �640 atoms contribute to the contact.

From this analysis we conclude that the high peak forces
occurring in tapping-mode AFM under ambient conditions and
in the repulsive force regime limit the resolution in the images.
Furthermore, the high forces give evidence for distortion or
destruction of sample and tip under typical tapping-mode im-
aging conditions. This notion was previously inferred indirectly
from measured data (destroyed molecules) and single-degree-
of-freedom forward calculations (36, 37). On the other hand, the
vast number of soft samples successfully imaged under compa-
rable conditions indicates the importance of dynamic aspects
such as peak forces and interaction durations.

In the reconstructed force, transient events are clearly visible.
On the slow time scale, the continuous decrease of the signal
amplitude is reflected in general changes of the reconstructed
force. The transitions between the mentioned force regimes as
well as the onset of bifurcation occur on the midrange time scale.
The onset of mechanical contact especially leads to an abrupt
change in the cantilever oscillation (Fig. 3A) and an overshooting
average force (Fig. 3C). This overshooting is reproduced in the
simulation (Fig. 4A). Notably close to the transitions between

Fig. 5. The time course of reconstructed force f(t) and measured signal s(t) (below the force graphs, scale bars indicate the free signal amplitude) are shown
for representative impact events, extracted from the positions marked i–v in Fig. 3E. The events are (i) free oscillation, (ii) purely attractive interaction, and (iii)
onset of contact. (iv) As the tip enters deeply into the interaction potential, repulsive forces become predominant and exceed 	200 nN (note the scale). At the
same time, attractive forces increase quite dramatically, and the total duration of the interaction pulse rises to 3.5 �s, confirming earlier results obtained with
a different method (19). The impact follows a typical sequence of attractive, repulsive, and again attractive force, just as in the case of a quasi-static force curve.
(v) For a certain set of parameters the nonlinearity in the effective external force can result in period doubling, and thus in a characteristic oscillation of the force
pattern (note the different time scale). Even in this case, we consider the cantilever itself still a linear sensor. (B) Comparing the impact event obtained on silicon
with that on PTFE measured with the identical tip under comparable conditions reveals material dependence (note the different force scales). Whereas a large
attractive force precedes the mechanical contact on silicon, the tip touches the PTFE surface almost immediately (see *). This difference in the transient force
points to the influence of surface wetting on silicon.
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the regimes the impact events differ from one to the following,
revealing transient events on the fast time scale (Fig. 5A and
Movie 1).

The demonstrated spectral analysis introduces dynamic AFM
as time-resolving technique and opens the field to locally access
transient surface forces. These transient forces are responsible
for plastic deformation and are involved in friction and wetting.
Using the AFM as nano-manipulator, the analysis presented
explains the transition between imaging and cutting thin fila-
ments, such as DNA. The dynamic response of thin polymer films
(1, 2), and their wetting behavior on the scales of nanometers and
(sub) microseconds becomes accessible. It finds its counterpart

in the dynamic stiffness of molecules pulled (3) or squeezed by
the AFM tip.

Recent development of fast cantilevers and detection setups
will push the accessible resolution of transient forces to nano-
seconds and beyond (38). ‘‘Pulse shaping’’ opens a further
exciting approach to probe forces on the molecular level: based
on the spectral analysis, the dynamic force exerted on the sample
can be designed by shaping the probing force pulse through
spectrally matched excitation at the cantilever base.

We thank Prof. W. Baumeister for his support. M.S. was funded by the
Deutsche Forschungsgemeinschaft (SFB 486).
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