Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1993 Jun;217(6):604–614. doi: 10.1097/00000658-199306000-00002

Effect of total parenteral nutrition on amino acid and glucose transport by the human small intestine.

Y Inoue 1, N J Espat 1, D J Frohnapple 1, H Epstein 1, E M Copeland 1, W W Souba 1
PMCID: PMC1242861  PMID: 8507109

Abstract

OBJECTIVE: The effect of total parenteral nutrition (TPN) on small intestinal amino acid transport activity was studied in humans. SUMMARY BACKGROUND DATA: Studies in humans receiving TPN indicate that a decrease in the activities of the dissacharidase enzymes occurs, but morphologic changes are minimal with only a slight decrease in villous height. METHODS: Surgical patients were randomized to receive TPN (n = 6) or a regular oral diet (controls, n = 7) for 1 week before abdominal surgery. Ileum (5 controls, 5 TPN) or jejunum (2 controls, 1 TPN) were obtained intraoperatively and brush-border membrane vesicles (BBMV) were prepared by magnesium aggregation/differential centrifugation. Transport of L-MeAlB (a selective system A substrate), L-glutamine, L-alanine, L-arginine, L-leucine, and D-glucose was assayed by a rapid mixing/filtration technique in the presence and absence of sodium. RESULTS: Vesicles demonstrated approximately 18-fold enrichments of enzyme markers, classic overshoots, transport into an osmotically active space, and similar 1-hour equilibrium values. TPN resulted in a 26-44% decrease in the carrier-mediated transport velocity of all substrates except glutamine across ileal BBMVs. In the one patient receiving TPN from whom jejunum was obtained, there was also a generalized decrease in nutrient transport, although glutamine was least affected. Kinetic studies of the system A transporter demonstrated that the decrease in uptake was secondary to a reduction in carrier Vmax, consistent with a decrease in the number of functional carriers in the brush-border membrane. CONCLUSIONS: TPN results in a decrease in brush-border amino acid and glucose transport activity. The observation that glutamine transport is not downregulated by 1 week of bowel rest may further emphasize the important metabolic role that glutamine plays as a gut fuel and in the body's response to catabolic stresses.

Full text

PDF
606

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke D. J., Alverdy J. C., Aoys E., Moss G. S. Glutamine-supplemented total parenteral nutrition improves gut immune function. Arch Surg. 1989 Dec;124(12):1396–1399. doi: 10.1001/archsurg.1989.01410120042009. [DOI] [PubMed] [Google Scholar]
  2. Diamond J. M., Karasov W. H. Adaptive regulation of intestinal nutrient transporters. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2242–2245. doi: 10.1073/pnas.84.8.2242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ferraris R. P., Diamond J. M. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol. 1989;51:125–141. doi: 10.1146/annurev.ph.51.030189.001013. [DOI] [PubMed] [Google Scholar]
  4. Guedon C., Schmitz J., Lerebours E., Metayer J., Audran E., Hemet J., Colin R. Decreased brush border hydrolase activities without gross morphologic changes in human intestinal mucosa after prolonged total parenteral nutrition of adults. Gastroenterology. 1986 Feb;90(2):373–378. doi: 10.1016/0016-5085(86)90935-2. [DOI] [PubMed] [Google Scholar]
  5. Hopfer U., Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem. 1980 May 25;255(10):4453–4462. [PubMed] [Google Scholar]
  6. Klimberg V. S., Salloum R. M., Kasper M., Plumley D. A., Dolson D. J., Hautamaki R. D., Mendenhall W. R., Bova F. C., Bland K. I., Copeland E. M., 3rd Oral glutamine accelerates healing of the small intestine and improves outcome after whole abdominal radiation. Arch Surg. 1990 Aug;125(8):1040–1045. doi: 10.1001/archsurg.1990.01410200104017. [DOI] [PubMed] [Google Scholar]
  7. Levine G. M., Deren J. J., Steiger E., Zinno R. Role of oral intake in maintenance of gut mass and disaccharide activity. Gastroenterology. 1974 Nov;67(5):975–982. [PubMed] [Google Scholar]
  8. Mircheff A. K., Wright E. M. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. J Membr Biol. 1976 Sep 17;28(4):309–333. doi: 10.1007/BF01869703. [DOI] [PubMed] [Google Scholar]
  9. Moore F. A., Moore E. E., Jones T. N., McCroskey B. L., Peterson V. M. TEN versus TPN following major abdominal trauma--reduced septic morbidity. J Trauma. 1989 Jul;29(7):916–923. doi: 10.1097/00005373-198907000-00003. [DOI] [PubMed] [Google Scholar]
  10. Peterson V. M., Moore E. E., Jones T. N., Rundus C., Emmett M., Moore F. A., McCroskey B. L., Haddix T., Parsons P. E. Total enteral nutrition versus total parenteral nutrition after major torso injury: attenuation of hepatic protein reprioritization. Surgery. 1988 Aug;104(2):199–207. [PubMed] [Google Scholar]
  11. Said H. M., Van Voorhis K., Ghishan F. K., Abumurad N., Nylander W., Redha R. Transport characteristics of glutamine in human intestinal brush-border membrane vesicles. Am J Physiol. 1989 Jan;256(1 Pt 1):G240–G245. doi: 10.1152/ajpgi.1989.256.1.G240. [DOI] [PubMed] [Google Scholar]
  12. Salloum R. M., Copeland E. M., Souba W. W. Brush border transport of glutamine and other substrates during sepsis and endotoxemia. Ann Surg. 1991 May;213(5):401–410. doi: 10.1097/00000658-199105000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Souba W. W., Klimberg V. S., Plumley D. A., Salloum R. M., Flynn T. C., Bland K. I., Copeland E. M., 3rd The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. J Surg Res. 1990 Apr;48(4):383–391. doi: 10.1016/0022-4804(90)90080-l. [DOI] [PubMed] [Google Scholar]
  14. Souba W. W., Pacitti A. J. How amino acids get into cells: mechanisms, models, menus, and mediators. JPEN J Parenter Enteral Nutr. 1992 Nov-Dec;16(6):569–578. doi: 10.1177/0148607192016006569. [DOI] [PubMed] [Google Scholar]
  15. Souba W. W., Pan M., Stevens B. R. Kinetics of the sodium-dependent glutamine transporter in human intestinal cell confluent monolayers. Biochem Biophys Res Commun. 1992 Oct 30;188(2):746–753. doi: 10.1016/0006-291x(92)91119-b. [DOI] [PubMed] [Google Scholar]
  16. Stevens B. R., Kaunitz J. D., Wright E. M. Intestinal transport of amino acids and sugars: advances using membrane vesicles. Annu Rev Physiol. 1984;46:417–433. doi: 10.1146/annurev.ph.46.030184.002221. [DOI] [PubMed] [Google Scholar]
  17. Wilmore D. W., Smith R. J., O'Dwyer S. T., Jacobs D. O., Ziegler T. R., Wang X. D. The gut: a central organ after surgical stress. Surgery. 1988 Nov;104(5):917–923. [PubMed] [Google Scholar]
  18. Yoshida S., Leskiw M. J., Schluter M. D., Bush K. T., Nagele R. G., Lanza-Jacoby S., Stein T. P. Effect of total parenteral nutrition, systemic sepsis, and glutamine on gut mucosa in rats. Am J Physiol. 1992 Aug;263(2 Pt 1):E368–E373. doi: 10.1152/ajpendo.1992.263.2.E368. [DOI] [PubMed] [Google Scholar]
  19. Ziegler T. R., Young L. S., Benfell K., Scheltinga M., Hortos K., Bye R., Morrow F. D., Jacobs D. O., Smith R. J., Antin J. H. Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann Intern Med. 1992 May 15;116(10):821–828. doi: 10.7326/0003-4819-116-10-821. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES