Skip to main content
. 2025 Sep 1;16:1630863. doi: 10.3389/fimmu.2025.1630863

Table 9.

The performance of the best ML models developed using different sets of top features on the validation dataset. Features were selected using mean-based univariate analysis.

Total feature ML model Sensitivity Specificity Accuracy AUC Kappa MCC
  • Top 305

  • RF

  • 57.63

  • 66.67

  • 60.87

  • 0.72

  • 0.22

  • 0.23

  • Top 200

  • RF

  • 66.10

  • 69.7

  • 67.39

  • 0.73

  • 0.34

  • 0.34

  • Top 150

  • RF

  • 59.32

  • 72.73

  • 64.13

  • 0.73

  • 0.29

  • 0.31

  • Top 100

  • ET

  • 67.80

  • 66.67

  • 67.39

  • 0.73

  • 0.33

  • 0.33

  • Top 50

  • ET

  • 61.02

  • 66.67

  • 63.04

  • 0.70

  • 0.26

  • 0.27

  • Top 20

  • SVC

  • 50.85

  • 75.76

  • 59.78

  • 0.70

  • 0.23

  • 0.26

  • Top 10

  • SVC

  • 59.32

  • 69.70

  • 63.04

  • 0.69

  • 0.27

  • 0.28

RF, random forest; ET, extra tree; SVC, support vector classifier.