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The folding of many small proteins is kinetically a two-state
process that represents overcoming the major free-energy barrier.
A kinetic characteristic of a conformation, its probability to de-
scend to the native state domain in the amount of time that
represents a small fraction of total folding time, has been intro-
duced to determine to which side of the free-energy barrier a
conformation belongs. However, which features make a protein
conformation on the folding pathway become committed to rap-
idly descending to the native state has been a mystery. Using two
small, well characterized proteins, CI2 and C-Src SH3, we show how
topological properties of protein conformations determine their
kinetic ability to fold. We use a macroscopic measure of the protein
contact network topology, the average graph connectivity, by
constructing graphs that are based on the geometry of protein
conformations. We find that the average connectivity is higher for
conformations with a high folding probability than for those with
a high probability to unfold. Other macroscopic measures of
protein structural and energetic properties such as radius of gyra-
tion, rms distance, solvent-accessible surface area, contact order,
and potential energy fail to serve as predictors of the probability
of a given conformation to fold.

The concept of the protein transition state ensemble (TSE) (1,
2) is the foundation of modern views on protein folding.

Conformations of proteins belonging to the TSE are unstable
and by definition have a 50% probability to fold to the protein
native state and a 50% probability to unfold or misfold. The TSE
conformations belong to the free-energy barrier separating
native and unfolded or misfolded domains for two-state proteins.
To understand the structure of the TSE conformations we must
determine the difference between ‘‘pretransition’’ states (con-
formations that are en route to the native domain from the
unfolded state but the transition barrier has not been crossed)
and ‘‘posttransition’’ states (conformations that are en route to
the unfolded domain from the native state but the transition
barrier has not been crossed). The distinguishing kinetic feature
between pre- and posttransition conformations is their proba-
bility to reach the native state domain, pFOLD (3). Because in the
posttransition conformations the nucleus (4) is not disrupted,
these conformations are more probable to fold than pretransi-
tion conformations in which the nucleus is not formed. If both
pre- and posttransition states are structurally and energetically
close to the TSE, the question then is what global properties
distinguish these states from each other?

To answer this question, we selected pre- and posttransition
states (see Methods) of two proteins: chymotrypsin inhibitor 2
(CI2) and C-Src SH3 domain, by using two different approaches
(ref. 5 and F.D., N.V.D., S. Buldyrev, H. E. Stanley, and E.I.S.,
unpublished data) and two different simulation techniques (6,
7). Both the CI2 and C-Src SH3 domain proteins have been
extensively studied experimentally (8–10), and both are known
to be two-state proteins. We verify that the pFOLD of the selected
pre- and posttransition conformations is �0 and 1 correspond-
ingly for both proteins (Table 1).

We find that such structural properties of protein conforma-
tions as radius of gyration (RG), rms displacement (RMSD) from
the native state, solvent-accessible surface area, and contact
order (11) cannot distinguish the pre- and posttransition con-
formations (Table 1). Correspondingly, the entropy of the pre-

and posttransition conformations cannot account for the differ-
ence between these conformations. We also find that the po-
tential energies (E) and the total number of contacts between
amino acids are within error bars from each other in the pre- and
posttransition conformations. If the pre- and posttransition
conformations are similar to each other structurally, we hypoth-
esize that there may be a difference in the topology of the
network of amino acid interactions in these conformations.

To study the topology of pre- and posttransition conforma-
tions, we construct graphs corresponding to these conforma-
tions in which nodes represent amino acids and edges represent
those pairs of amino acids that are geometrically located within
interaction distance from each other. Vendruscolo et al. (12)
have shown recently that the ‘‘small-world’’ feature (13–15) of
proteins can be used to identify the key residues that stabilize
the structure of the transition state. Our hypothesis is that the
network of amino acid interactions in posttransition confor-
mations is more small world-like (13–15) than that in pretran-
sition conformations. The small-world graphs are a special
class of random graphs that are connected as strongly as
regular graphs (the clusters have a similar structure to regular
graphs), but the average path that spans two nodes via a
minimal set of graph edges is as low as that for random graphs
(refs. 12 and 16 and figure 2 of ref. 13). The difference between
regular, small-world, and random graphs is the ‘‘wiring’’ of
these graphs: regular graphs are connected strongly locally,
with no long-range edges; random graphs are disconnected
locally but have many long-range edges; and small-world
graphs are the blend of the high local connectivity with a
number of the long-range contacts. Small-world graphs are
characterized by small separation of nodes from each other,
which for proteins means a higher degree of interaction
cooperativity. Thus, we hypothesize that the wiring of the
posttransitional conformation graphs is ‘‘tighter’’ than that of
the pretransition conformation graphs, resulting in a cooper-
ative folding to the native state domain.

To measure the wiring properties of pre- and posttransition
conformation graphs, we compute the average minimal dis-
tance L between any pair of nodes of a graph by counting the
minimal set of edges that connect these nodes (13). We find
that the L values for posttransition conformation graphs are
distinctly smaller than those for the pretransition conforma-
tion graphs, thus fully supporting our hypothesis (Table 1). We
also observe that the posttransition conformation graphs have
more edges that are of intermediate and long range than
pretransition ones (Fig. 1), which shortens the minimal path
for each node k, L(k) (Fig. 2), thus creating a more cooperative
network for the former graphs. A similar mechanism was
observed by Watts and Strogatz (13), who, by rewiring circular
graphs by removing local edges and creating a few long-range
edges, were changing the graph properties from the regular to
the small world. Interestingly, some CI2 pretransition confor-
mations have N and C termini in contact, in contrast to
posttransition conformations (Figs. 1 and 2). Although the
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contact between the N and C termini is of the longest range,
the lack of intermediate-range contacts nevertheless makes
pretransition conformation networks less ‘‘cooperative’’ than
posttransition ones. The difference between the numbers of

long-range contacts in pre- and posttransition conformations
is not statistically significant, thus the average contact orders
for both conformation ensembles cannot discriminate between
pre- and posttransition ensembles.

Table 1. The structural [RG, RMSD, solvent-accessible surface area (SASA), contact order, and number of contacts], energetic (E), and
topological properties (L) of pre- and posttransition states of CI2 and C-Src SH3 domain proteins

Protein
Relation
to TSE

Number
of conf. pFOLD RG, Å RMSD, Å

SASA,
� 103 Å2

Contact
order, %

No. of
contacts E L

CI2 post- 20 0.89 � 0.07 13.0 � 0.5 5.2 � 0.9 6.5 � 0.2 19 � 1 183 � 5 �102 � 13 3.5 � 0.1
pre- 6 0.02 � 0.04 13.0 � 0.2 5.9 � 0.3 7.1 � 0.3 19 � 2 171 � 4 �130 � 19 4.4 � 0.4

C-Src post- 10 0.96 � 0.01 11.2 � 0.3 4.9 � 0.3 4.5 � 0.1 22 � 3 110 � 4 �85 � 2 2.73 � 0.03
SH3 pre- 10 0.26 � 0.08 11.8 � 0.3 4.7 � 0.1 4.4 � 0.1 16 � 2 102 � 7 �84 � 3 3.31 � 0.06

The values of pFOLD correlate only with L values; the posttransition states are characterized by pFOLD � 1, and their L values are smaller than that for the
pretransition states, which are characterized by pFOLD � 0. conf., conformations.

Fig. 1. The three-dimensional structure of the CI2 protein in post- (a) and pretransition (b) states. The protein graphs are constructed based on the structure
of post- (c) and pretransition (d) states. Each node of protein graphs corresponds to an amino acid, whereas each edge between a pair of nodes corresponds to
that pair of amino acids that are geometrically in contact with each other. For both CI2 and C-Src SH3 domain proteins’ graph constructions, the contact between
two amino acids is considered to be present if the distance between corresponding C� atoms is less than 8.5 Å. In a and b, residues A16, L49, and I57 belonging
to the specific nucleus of CI2 (8) are denoted by red spheres. A16, L49, and I57 form a triad of contacts in posttransition conformations (a), whereas such contacts
are missing in the pretransition conformations. In both pre- and posttransition states the number of edges (contacts) are approximately the same.
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An important property of the L values of protein conforma-
tions is that they can serve as a structurally reliable determinant
of the pre- (pFOLD � 0) and posttransition (pFOLD � 1) states.
The principal difficulty in selecting TSE conformations, the basis
of the protein-engineering experiments, is the identification of
the reaction coordinate for protein folding. The reaction coor-
dinate for folding is not well defined (3, 17, 18) and has yet to
be identified. The fact that average graph connectivity distin-
guishes the protein pre- and posttransition states, which can be
close along the reaction coordinate to the TSE, tells us that any
future constructions of the reaction coordinate should strongly
depend on the structure of protein interaction networks.

Interestingly, in experimental studies of CI2, the cleavage
between amino acids M40 and E41 is the only one that does not
destroy the protein’s three-dimensional structure (19). Neira et
al. (19) cut CI2 at M40–E41 (without circular permutation) to
separate fragments 1–40 and 41–64 and found that these frag-

ments reassociate into CI2. We find that amino acids M40 and
E41 have the largest values of L(k) in the pretransition states and
among the largest values in the posttransition states (Fig. 2a),
indicating that these amino acids are the most separated on
interaction network from the rest of the amino acids. Weak
participation of amino acids in the protein interaction network
in pre- and posttransition states means that these amino acids
have weak impact on protein folding kinetics and on the final
native state of the protein (because the folding pathway is not
altered). Thus, our findings are in agreement with ref. 19.

A crucial factor that distinguishes pre- and posttransition
states is the protein folding nucleus, the formation of which in
the TSE results in the rapid folding transition to the native state,
and the disruption of which results in the global unfolding (4).
Pretransition states lack the folding nucleus, whereas posttran-
sition states have it intact (Fig. 1 a and b). Thus, the difference
of L(k) between the pre- and posttransition states, �L(k), is most
pronounced for those amino acids that are part of the protein
folding nucleus. We find that for CI2 (Fig. 2a), the experimen-
tally identified folding nucleus (8), A16, L49, and I57, has one
of the largest �L(k) values.

We also find that for C-Src SH3 domain (Fig. 2b) �L(k) is most
pronounced for two fragments, RT–loop (16–26) and �4 (54–
61), suggesting a crucial role of the connectivity between these
fragments in the TSE. This observation is in agreement with the
finding of F.D., N.V.D., S. Buldyrev, H. E. Stanley, and E.I.S.,
(unpublished data), in which the nucleus of C-Src SH3 domain
is identified on the RT–loop and �4.

The evolution of the protein graphs from pre- to posttransition
states may be the key to better understanding the protein folding
dynamics. It is possible that the formation of a specific nucleus
(17) is the consequence of ‘‘specific rewiring’’ of protein graphs
when a protein crosses the free-energy barrier en route to its
folded state. Further studies are necessary to shed light on the
relation of protein graph properties to the formation of a specific
nucleus. The evolution of various networks has been extensively
studied recently. Barabasi and Albert (14) recently proposed a
model to explain scale-free networks, in which the distribution
of the number of edges per node (node degree) scales as a power
law. Their model is based on the idea of ‘‘preferential attach-
ments’’: the most connected nodes are more probable to acquire
new edges with other graphs’ nodes in the course of graph
evolution. Although because of the finite size of protein graphs
there is no evidence that our graphs are scale-free, we test
whether evolution of the protein graphs during protein folding
follows the preferential attachment scenario. We find (Fig. 3)
that most connected residues actually decrease the number of
edges rather than increase them (e.g., A16). In addition, we find
that some residues that were less connected in the pretransition
states become more connected (e.g., refs. 47–51). The correla-
tion between change in the node degrees between post- and
pretransition states and posttransition states is 0.61. We believe
that when protein crosses its folding transition barrier, the
network topology changes toward a specific one. Such rewiring
herds the topology into a less random conformation. Thus, we
observe specific rewiring rather than a preferential attachment.

In this work we presented a new structure-based topological
criterion that seems to be a good predictor of kinetic ability to
fold for a given conformation. The fact that this criterion
performed equally well for two different proteins, simulated
within different models by using different techniques, suggests
its generality. Moreover, our recent all-atom Monte Carlo
analysis of TSE of protein G (J. Shimada and E.I.S., unpublished
data) also shows consistency with the proposed criterion. Fur-
ther theoretical understanding of the deep connection between
topological properties of protein conformations and their kinetic
ability to fold is a challenging task for future studies.

Fig. 2. The dependence of the average minimal distance L(k) between a
node k and the rest of the nodes on CI2 (a) and C-Src SH3 domain (b) proteins’
graphs for post- (F) and pretransition (■ ) states. The error bars represent the
standard deviation from the average values of L(k) over all post- and pretran-
sition states. In a, by the open circles (E) we denote amino acids M40 and E41
that do not affect the protein three-dimensional structure after cleavage of
the 40–41 bond (19), and by the open boxes (�) we denote the folding nucleus
of CI2 (8), A16, L49, and I57.
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Appendix: Methods
CI2. We perform Monte Carlo simulations of the all-atom model
of CI2. The all-atom Monte Carlo has been described in detail
elsewhere (7). We identify our putative TSE by using the method
of Vendruscolo et al. (5). In our simulations, we approximate
the experimentally determined � values of amino acids �m by
the ratio of the number of contacts each amino acid makes in the
TSE, N‡, to that in the native state of CI2, NNS,

�sim � N‡�NNS. [1]

To generate the putative TSE, we perform unfolding simulations
from the native structure of CI2 at T � 2.3 by using the form of
the potential energy of amino acid interactions

E � EGo� � �� �
k � 1

N

��sim	k
 � �exp	k
�2, [2]

where EGo� is the Go� potential energy (20–22), where the
attractive potential (EGo� � �1) between residues is assigned to
the pairs that are in contact in the native state, and the repulsive
potential (EGo� � �1) is assigned to the pairs that are not in
contact in the native state. The parameter � � 103 is set to a large
value compared with the Go� potential to enforce the environ-
ment of each amino acid, k, in our simulations to be close to that
observed experimentally. The �exp are the experimental � values
at 0 M GdHCl from Itzhaki et al. (8) for the following 39
mutations: K2M, T3A, P6A, E7A, L8A, S12A, E14N, E15Q,
A16G, K17A, K18G, I20V, L21A, Q22G, K24G, P25A, E26A,
I29A, I30A, L32A, V34T, T36V, V38A, T39A, E41A, Y42G,
R43G, D45A, V47A, L49A, F50A, V51A, D52A, N56D, I57A,
A58G, V60G, P61A, and V63A. �m for I57A has been set to 0.5,
because this residue is part of the nucleus despite its low � value
(23). The summation is over the n � 39 positions stated above.

For each putative TSE conformation (40 in total) we compute
the probability to fold to its native state by performing 20
independent simulations at T � 1.2 for 5 � 107 Monte Carlo
steps, which is less than 5% of the folding time from a random
coil (data not shown; ref. 24). We consider the system folded
when the RMSD for the backbone of the protein is less than 1Å.
The average probability of folding pFOLD is 0.59, which confirms
that the selected conformations do belong to the TSE. In Table

1 we present the data for the 20 conformations with pFOLD � 0.8,
which represent posttransition states.

We construct the pretransition conformations in a similar way
to the putative TSE conformations except that the �exp values
are set artificially and are not taken from experiments (24). We
choose �exp to create structures with approximately the same
energy and RMSD as the TSE conformations (Table 1). For the
construction of the pretransition conformations we choose the
�exp to be 0.5 for K2, E4, E7, L8, K11, E15, K18, V19, and D23
and 0.4 for V60, P61, R62, and V63. To create pretransition
conformations that differ from each other we alternate the �exp
values between these conformations. In Table 1 we present the
data for the six conformations with pFOLD � 0, which represent
pretransition states.

C-Src SH3 Domain. We model the C-Src SH3 domain by beads
representing C� and C� atoms. To mimic the flexibility of real
proteins, we apply additional constraints (F.D., N.V.D., S.
Buldyrev, H. E. Stanley, and E.I.S., unpublished data): (i)
‘‘covalent’’ bonds between C�i and C�i, (ii) ‘‘peptide’’ bonds
between C�i and C�(i�1), (iii) effective bonds between C�i and
C�(i�1), (iv) effective bonds between C�i and C�(i�2), where the
subscript i denotes the amino acid sequence number. We use the
Go� potential (20–22) to model interactions between C� atoms of
the C-Src SH3 domain. It has been shown (F.D., N.V.D., S.
Buldyrev, H. E. Stanley, and E.I.S., unpublished data) that our
model of the C-Src SH3 domain can reproduce faithfully the
thermodynamic and kinetic properties observed in experiments
(9, 10).

To identify the TSE and then the pre- and posttransition
states, we follow the method developed in ref. 32 (F.D., N.V.D.,
S. Buldyrev, H. E. Stanley, and E.I.S., unpublished data). We
perform the discrete molecular dynamics simulation of the C-Src
SH3 domain at the folding transition temperature, Tf � 0.92. We
select conformations that belong to the putative TSE from those
with the potential energy in the range {ETS}, corresponding to
the minimum of the probability of the potential energy histo-
gram at T � Tf (figure 1a in ref. 4). We distinguish four types of
fluctuations during the simulation of the C-Src SH3 domain that
pass through the unstable states within energies in the range
{ETS}: (i) FF, when the folded protein unfolds to {ETS} and then
refolds rapidly to its native state, (ii) UU, when the unfolded
protein partly folds into {ETS} and then unfolds rapidly, (iii) FU,
when the folded protein unfolds to {ETS}, and then pro-
ceeds unfolding further, and (iv) UF, when the unfolded
protein traverses the energy range {ETS} on its way to folded
conformations.

Next, we compute pFOLD for each selected conformation by
performing 102 independent simulations for 2 � 103 time units
at Tf. The average time the C-Src SH3 domain spends in the
unfolded state is 105 time units, whereas the average and
maximum times of C-Src SH3 domain folding from an unfolded
state at which C-Src SH3 domain is already committed to the
folding transition is 102 and 103 time units correspondingly.

We find that the pFOLD of the most representative UF and FU
conformations are �0.5, which suggests that these conforma-
tions belong to the TSE. For UU and FF conformations, we find
that the pFOLD values are �0 and �1, respectively. Thus, we
select the pre- and posttransition conformations from the UU
and FF ensembles of conformations correspondingly.

The Protein Graphs. The protein graphs are constructed on the
basis of the C� representation of proteins. Each graph node
represents an amino acid. Each graph edge connects pairs of
nodes that correspond to pairs of amino acids that are located
geometrically within an interaction threshold radius, which we
set to Rc � 8.5 Å. We test graph connectivity properties for

Fig. 3. Plot of the degrees of each node versus the residue number for post-
(thick solid line) and pretransition (thick broken line) states for CI2. The thin
line represents the difference in node degrees between pre- and posttransi-
tion states.
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various definitions of contacts and find that these properties are
qualitatively invariant under contact definitions.

The average minimal distance L(k), also known as the chem-
ical distance (25), between a node k and the rest of the graph
nodes is defined as

L	k
 � � 1
N � 1 �

j � 1

N

�kj� , [3]

where N is the number of nodes in the graph or number of amino
acids in proteins, �kj is the minimal number of edges one must
transverse to reach a node j from a node k  j. The averaging is
done over all pre- or posttransition states. Analogously, we

define the average minimal distance L between all pairs of nodes
of the protein graph

L � � 1
N	N � 1


�
k 	 j � 1

N

�kj� . [4]

For example, the minimal distance between nodes N1 and V20
in the graph of Fig. 1c is 3, the path corresponding to the minimal
distance passes through nodes E5 and P7: N13E53 P73V20.
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