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An enhanced bioinformatics tool incorporating the participation of
molecular structure as well as sequence in protein DNA recognition
is proposed and tested. Boltzmann probability models of sequence-
dependent DNA structure from all-atom molecular dynamics sim-
ulations were obtained and incorporated into hidden Markov
models (HMMs) that can recognize molecular structural signals as
well as sequence in protein–DNA binding sites on a genome. The
binding of catabolite activator protein (CAP) to cognate DNA
sequences was used as a prototype case for implementation and
testing of the method. The results indicate that even HMMs based
on probabilistic roll�tilt dinucleotide models of sequence-depen-
dent DNA structure have some capability to discriminate between
known CAP binding and nonbinding sites and to predict putative
CAP binding sites in unknowns. Restricting HMMs to sequence only
in regions of strong consensus in which the protein makes base
specific contacts with the cognate DNA further improved the
discriminatory capabilities of the HMMs. Comparison of results
with controls based on sequence only indicates that extending the
definition of consensus from sequence to structure improves the
transferability of the HMMs, and provides further supportive
evidence of a role for dynamical molecular structure as well as
sequence in genomic regulatory mechanisms.

The idea that structure as well as sequence might serve as a
useful bioinformatics screening criterion has considerable

potential in genomics for elucidating similarities with low se-
quence consensus. The proposal that protein–DNA recognition
involves molecular geometry as a supplement to sequence-based,
nonbonded contacts dates back at least to the observation of
structural irregularities in the first high-resolution x-ray crystal
structure of B-DNA (1, 2). However, structural characteristics of
DNA at the most fundamental level, Boltzmann statistical
mechanics, is described in terms of the probability of achieving
a particular conformational or helicoidal state at a given tem-
perature, rather than a single time averaged form. We propose
herein a methodology in which probability models of dynamical
structure derived from molecular dynamics (MD) simulations on
DNA including counterions and water (3, 4) are incorporated
along with DNA sequence information into hidden Markov
models (HMM) (5, 6) suitable for genomic analysis. HMMs
already provide a statistical framework for protein and DNA
sequence alignments (6–8), and the probabilistic nature of
HMMs per se (9, 10) is ideally suited for incorporating Boltz-
mann probability models of molecular structural characteristics
from MD into a bioinformatics tool. The binding of catabolite
activator protein (CAP) to cognate DNA sequences (11–13)
serves as a model protein–DNA binding system and basis for
demonstration and testing of the methodology. The resulting
HMMs are applied to scans of the Escherichia coli genome. The
results provide further exploration of a role for molecular
geometry as well as sequence in protein DNA recognition and
specificity as a means of genomic searches.

Background
The hypothesis of a molecular structural component in protein–
DNA recognition is the basis of a number of recent research
studies aimed at using observable properties of DNA sequences

as a basis for genomic searches. A base pair scale derived from
the sequence dependence of propeller twist has been used in
scans of aligned polymerase II promoters (14). A dinucleotide
scale based on sequence-dependent melting propensities was
shown to have diagnostic capabilities for prokaryotic promoter
regions (15). Dinucleotide scales based on gel retardation have
been developed by Bolshoy et al. (16) and used as a basis for a
search for promoter sites by Ozoline et al. (17). Trinucleotide
scales have been developed based on both DNase I digestion (18)
and nucleosome positioning (19, 20), and used in scans of
polymerase II promoters (14). Perez-Martin and de Lorenzo
(21) have recently reviewed the literature on DNA bending and
genomic transcription. Recently, Lavery and Lafontaine (22, 23)
have proposed a method, ADAPT (24), which begins with the
crystal structure of the DNA in a protein–DNA binding site and
calculates the compatible sequences based on energy minimiza-
tion. An integrative view of the structural hypothesis has been
developed by Pedersen et al. (25) and presented in a novel
color-coded computer graphic wheel called a DNA structural
atlas for E. coli and 17 other prokaryotic genomes. Numerous
empirical correlations between functional genomic sites and
molecular properties of the DNA were noted, including regions
in which all characteristics had extreme values simultaneously.

Experiments do not directly yield probability measures or
models, but probabilistic description of dynamical structure can
be obtained from MD simulation. MD simulation (26) involves
numerical integration of Newtonian laws of motion based on
intermolecular forces computed from empirical or semiempiri-
cal potential functions and results in a description of structure as
a function of time. With the availability of increased computer
power, MD has become widely used for computational modeling
of biological macromolecules in solution (27–29). Although
computationally quite intensive, MD can generate all-atom
description of the dynamics of in vitro DNA oligonucleotides in
solution including solvent water and counterions explicitly, and
the structural characteristics of DNA suitable for this project can
be obtained from an analysis of MD results. The field of MD
applied to DNA and nucleic acids in general has been under
serious development since the early 1980s (30). The assessments
of current MD force fields and simulation protocols compared
with experimental data show dramatic improvement in recent
years (3, 4). Although some specific deficiencies remain, suc-
cessful descriptions of DNA sequence effects on dynamical
structure (31, 32), conformational transitions (33, 34), and
salient features of DNA bending and bendability (35–37) have
been reported. However, to our knowledge, MD on DNA has not
heretofore served as the basis for a genomic search.

HMM provide a natural way of incorporating both sequence
information and probability models of structure into a form
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suitable for analyzing genomic DNA (6, 8). HMMs, following the
notation of Baldi et al. (7), are a general statistical technique
defined on a set of n states S � [S1, S2, . . . , Sn]. On moving from
state to state consistent with a set of Markov transition proba-
bilities T � [tij], each state emits, based on emission probabilities
E � [ei�], a sequence of symbols �i from a well defined alphabet
� � [�1, �2 . . . , �m]. The process is Markovian in that transitions
depend only on the current step and that immediately preceding,
and ‘‘hidden’’ because the path of the system from state to state
is probabilistic and generally not an output of interest as long as
the symbols emitted are consistent with the model. ‘‘Training’’
an HMM involves calculating numerically the transition and
emission probabilities T and E based on a set of appropriate data.
Extensive applications of HMM in computational biology are
described in the recent literature (9). Notably, HMM studies of
multiple sequence alignment (38), protein DNA binding sites
(14), and gene finding (39) have already been developed on the
basis of DNA sequence alone.

The binding of CAP to DNA, a well characterized example of
a genomic regulatory system, was chosen as a demonstration
case. CAP activates the transcription of many operons involved
in the uptake and catabolism of various sugars and other carbon
sources, and in addition functions as a repressor of its own gene.
The crystal structure of CAP both uncomplexed (40) and
complexed with a 30-bp oligonucleotide (41) have been reported
(Fig. 1A). The CAP protein structure contains a helix–turn–helix
(HTH) motif extending over some three turns of DNA helix
(�36 bp). The target site for CAP contains an interrupted
inverted repeat with a highly conserved TGTGA cassette located
one half turn away from the center of palindromic symmetry in
one of the monomer units; the consensus of sequence in the
binding region of the other monomer is not as strong. The HTH
motif of CAP binds to the major groove of the cognate DNA
sequence, which in the crystal form narrows the major groove
and widens the minor groove compared with canonical B-form
DNA structure. This occurs in conjunction with a �45° localized
deformations produce by base pair roll at TpG steps, resulting in
a �90° overall bend in the bound DNA. Recent studies of
complexes involving DNA and CAP mutants (42, 43) provides
additional perspective on structural issues as well direct and

indirect readout in protein DNA complexation. Despite the low
sequence homology in regions not involved in specific contact
with the protein (Fig. 1B), certain combinations of mutations in
this regions modulate the half-life of the bound species to on the
order of 100-fold that of the biologically active site (44), further
suggesting a role for indirect readout in the CAP–DNA system.

Methods
Molecular Dynamics Simulations. Seven MD simulations on DNA
sequences were obtained from a recent study of sequence effects
on DNA structure (37) and used to form probability models of
structural variables. Full details of simulation protocols, force
field (AMBER parm.94), and analysis of the results are reported
elsewhere (37). This particular set of sequences was chosen
because the MD simulations were all performed using the same
protocol, environmental conditions, and temperature, and thus
the results by base pair step are as comparable as possible. We
use in this study only base pair roll and tilt by dinucleotide step.
The roll�tilt pair (16, 45, 46), although not the only operational
variables in this problem, is appropriate for a simple demon-
stration of our methodology. Polar ‘‘bending dials’’ (ref. 45; Fig.
2) were used to display the magnitude and direction of sequence-
dependent deformations obtained from analysis of all of the MD
by base pair step. Points on a bending dial carry magnitude and
direction of stepwise deformation of the local dynamical struc-
ture from a reference state of canonical B DNA (47). To avoid
artifacts from end effects, the first and last base pair steps from
each sequence were not included. Each bending dial was digi-
tized into directional quadrants k � {1, 2, 3, 4} associated with
displacements of roll toward the major and minor grooves (k �
1, 3) and displacements of tilt toward the respective sugar
phosphate backbone (k � 2, 4). The radial coordinate of each
bending dial was digitized into rings of radii r�j, j � {1, 2, . . . ,
l) defined such that the area between each ring, specifying a
range of conformational magnitudes, encompasses (100�l)% of
the total points for the bending dial �. The average of these 10
radial coordinates r̄�r is just

Fig. 1. (A) Crystal structure of the CAP DNA complex (41); (B) sequence logo
indicating high information content in the half sites, constructed from set of
known CAP binding sites considered in this article. The Logo figure was
created from http:��www.bio.cam.ac.uk�cgi-bin�seqlogo�logo.cgi. Arrows
indicate mutations that, in various combinations, significantly affect binding
affinity (44).

Fig. 2. Definition of roll�tilt bending dials for a DNA base pair step (45).
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r��r � �
�

r�r�m [1]

and taken to specify the reference B-form DNA base pair step
behavior. This was used as the cutoff on all � dials and the point
in each region (k, l) bounded by the annular rings R�r. Direc-
tional quadrant divisions k were counted and normalized to give
values for the conformational probabilities P�(k, l), where

P��k, l� � N�kl��
k,l

N�kl. [2]

Here N�kl is the number of MD data points for geometry (k, l)
at base pair step � and the sum is over all discrete geometrical
categories. Sample results for the optimal model in which l � 2
are presented in Table 2, which is published as supporting
information on the PNAS web site, www.pnas.org. The MD
results show essentially straight ApA steps (37) and a strong
propensity for base pair roll toward the major groove at YpR
steps (48), particularly CpA, and toward the minor groove at
RpY steps. This behavior is generally consistent with that
observed in oligonucleotide crystal structures (37, 46) and the
general sequence DNA bending model of Dickerson and co-
workers (49). The corresponding probability that a given base
pair step � exhibits the geometry (k, l) is given by

Pk,l��� � N�kl��
�

N�kl, [3]

where the sum runs over all elements of the alphabet. The MD
results obtained for Pk,l(�) are provided in Table 3, which is
published as supporting information on the PNAS web site. The
MD probabilities P�(k, l) and Pk,l(�) in Tables 2 and 3 are used
to incorporate dynamical structure into dinucleotide step HMMs
as described below.

Hidden Markov Models. All HMM calculations in this project were
carried out with the program HMMPRO, generously made avail-
able by NetID, Inc. Use of HMMPRO in this project is based on
an alphabet � consisting of the ten unique dinucleotide steps
{ApA, ApT, . . . , CpC}. All HMM connectivities are based on
the linear architecture shown in Fig. 3, in which the states Si are
comprised of main states Mi, insert states Ii, and delete states Di,
namely,

S � �start, M1, . . . , Mn, I1, . . . , In�1, D1, . . . , Dn, end�. [4]

Based on the results of footprinting experiments (50), a site size
with n � 36 encompasses the sequence length of CAP-related
control elements. The HMM was trained on sixteen well char-
acterized CAP binding sites observed to have regulatory func-
tionality by using 350 cycles of the full gradient descent online
option to obtain the emission and transition probabilities. Both
transmission and emission probabilities were found to be well

converged. The HMM at this point knows the probabilities for
the observation of each of the unique base pair step in the known
binding sites, and is referred to as a sequence HMM. These
sequence-only-based HMMs (SEQ-HMMs) will score an un-
known with respect to its probability of achieving the sequence
characteristics learned from its training set.

Incorporating the MD description of sequence-dependent
structure into HMMs (denoted MDS-HMMs) is accomplished
here by a two-step process in which the emission probabilities ei�
are transformed first to emission probabilities e�ikl and subse-
quently, by a second transformation, to emission probabilities
e	i�. The e�ikl are emission probabilities for a geometry (k, l) and
the e	i� are emission probabilities conditional on simultaneously
satisfying the probability model of structure from MD and
probability model of sequence trained into the HMM. In step 1,
the ei� are transformed by the P�(k,l) of Table 2,

ei��P��k, l� � e�i�kl, [5]

where the e�i�kl refer to state i, step �, and geometry (k, l).
Because at this point we are not interested in the contribution
from step � but in the geometry (k, l) corresponding to that step,
we sum over all steps,

�
�

e�i�kl � e�ikl, [6]

in which the e�ikl is the geometry emitted by the state i and the
prime reminds us that the information on geometry was the
result of an MD transformation subsequent to HMM training.
However, e�ikl is indexed by geometry and not by step as in the
original HMMs. To convert from structure to sequence, we apply
a second transformation,

e�ikl�Pkl��� � e	i�kl, [7]

in which the e	i�kl are emission probabilities for symbol �, and
geometry (k, l) in state i. Note that at this point the emission
probability knows both step and geometry. Finally, we return this
to the step level by summing over geometries,

�
k,l

e	i�kl � e	i�, [8]

defining a matrix E	 of transformed HMM emission probabilities
e	i� that incorporate the Boltzmann probability model of struc-
ture from MD by step. All probabilities are normalized at every
opportunity, but this is omitted from the equations in order not
to overly complicate the notation. The transition probabilities T
remain unchanged.

When a protein–DNA binding site shows a tract of strong
sequence consensus making physical contacts, an HMM model
in which the SEQ condition is applied locally is desired, with no
variation permitted in this region based on structure. Emissions
for steps outside the contact region are subjected to transfor-
mation. For the 36-bp CAP DNA system, bases 10–15 are the
highly conserved TGTGA sequence motif known from the
crystal structure (41) to be involved in specific intermolecular
contacts between the CAP protein and DNA. The result is a
hybrid HMM of sequence only in the consensus region and
sequence plus dynamical structure in the remainder of the site,
referred to as a consensus sequence–dynamical structure hybrid
(CSQ�MDS) HMM. This HMM scores unknowns based on
probability for consensus sequence in positions 10–15 plus a
probability of consensus sequence and structure in the remain-
der of the query site.

With all of the above in place, HMMPRO with any one of the
specified HMMs loaded as the active model can be used to score
how well a given ‘‘new’’ (i.e., unknown to the model) or query
sequence fits the established profile. All scores were generated

Fig. 3. Connectivity of the linear architecture of the HMM used in this study.
Our models have n � 36 instead of n � 3 as shown in the figure (see text).
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using the Viterbi algorithm in global mode. The scoring system
was calibrated by scoring the ‘‘test set’’ consisting of 25 known
CAP binding sites [refs. 11, 50, and 51; including the 16 from the
original HMM training set (black bars) plus 9 not included
before (gray bars)]. plus 110 eukaryotic nonbinding sequences
(white bars). A range of scores was obtained in this process, from
which a threshold value that provides optimal discrimination
between sequences that do and do not exhibit the pattern
displayed by the training set. Because the optimal cutoff for each
HMM is particular to the model, a standard way to compare the
models was devised based on the success rate of finding 92%
(missing two) and 88% (missing three) of the known binding
sites.

In comparing and assessing results from the various HMMs
described above, it is important to determine how well an HMM
distinguishes between binding and nonbinding sites with respect
to some threshold value in scoring (discriminatory ability), and
how successfully an HMM can locate binding sites not in the
training set (transferability). A well known problem arises with
HMMs when the training set is biased in favor of a particular
feature. The resulting HMM has strong discriminatory ability
(with respect to this feature) but weak transferability—i.e., its
ability to recognize unknown binding sites will be compromised
by overtraining (6, 10). Examining scores on a test set that
consists of both binding sites not in the original training set and
nonbinding sites can recognize this problem.

Results
A total of 23 HMMs employing various choices of disposable
parameters were tested so far in this project, and fall into the
general categories sequence only (SEQ), molecular dynamical
structure (MDS), and consensus sequence–dynamical structure
hybrids (CSQ�MDS), as defined in the preceding section. The
SEQ-HMM serves as a control. The test set was constructed as
described above and scored with the MDS-HMM. Details of the
HMMs are provided in Table 1.

The results are presented in Figs. 4–6. For clarity only 20 of
the 110 nonbinding sites considered are included, but these are
well representative of the entire set. Two thresholds, which
scored correctly 92% and 88% of the known binding sequences,
respectively, were considered. The scoring based on the MDS-
HMM 4 
 2 is shown in Fig. 4. This model, based on four
divisions of roll�tilt orientations and three divisions of magnitude
(small, medium, and large), scored the test set with 35.5% and
32.7% error under the respective thresholds.

We proceeded to improve the HMM by restricting to sequence
consensus only at positions 10–15 as described above, producing
a CSQ�MDS model. With this information added, the scoring
error was reduced to 12.7% and 6.4% for the 92% and 88%
thresholds, respectively (Fig. 5). Thus, as expected, restricting
the region where specific contacts are required between the CAP
protein and its DNA binding site to a probability model of
sequence information improved the discriminatory abilities of
the HMM.

The level of resolution to be applied to the magnitude of
deviations in the DNA structures was explored by sensitivity
analysis. The CSQ�MDS models with small and large (4 
 1) and
with small, medium, and large magnitude (4 
 2) performed
with 6.4% error at the 88% threshold. At a resolution level of
4%, the percentage points attributed to a single known binding
site, exploratory models with four, seven, and eight magnitude
components show comparable discriminatory ability in scoring

Fig. 4. Log odds scoring of the MDS-HMM with four categories of direction
and three categories of magnitude on the 25 CAP binding and 110 nonbinding
sites. Of the 25 CAP binding sites, 16 are used for training. For the clarity of the
figure, only results from 20 nonbinding sites are explicitly included, but all are
well representative of the full complement.

Fig. 5. Log odds scoring of the CSQ�MDS-HMM with four categories of
direction and three categories of magnitude in the MDS region on the CAP
binding test set. Sites 11–15 are restricted to an HMM model of sequence only.

Fig. 6. Log odds scoring of the SEQ-HMM on the CAP binding test set.

Table 1. Designations and details of hidden Markov models
referred to in this study

Model MDS-HMM CSQ�MDS-HMM

#k #r 92% cut 88% cut 92% cut 88% cut

4 
 0 1.8 0.0 9.1 9.6
4 
 1 37.3 30.0 12.7 6.4
4 
 2* 35.5 32.7 12.7 6.4
4 
 3 60.0 60.0 14.5 9.1
4 
 4 66.4 66.4 16.4 13.6
4 
 5 74.5 61.8 21.8 20.9
4 
 6 70.0 68.2 17.3 10.0
4 
 7 75.5 70.9 17.3 10.0
4 
 8 79.1 76.4 16.4 13.6
4 
 9 80.9 78.2 18.2 18.2
4 
 10 80.9 77.3 22.7 22.7

D N C * * 2.7 2.7

*Model selected for further study.
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protein binding and nonbinding sites in the test set as well. The
digitization of magnitude into three divisions seems the most
reasonable compromise at this point.

Results on scoring the test set based on sequence only
(SEQ-HMM) were obtained as a control. It scored known
binding sites in the training set significantly better than those in
the test set (Fig. 6), clear indication of overtraining. The
corresponding MDS-HMMs score binding sites in the training
and in the test set at a similar level (for example, Fig. 5),
presumably as a consequence of a broader definition of consen-
sus (sequence plus structure). To elucidate this point, a pur-
posely overtrained model problem was constructed. Seven of the
original sixteen sequences were arbitrarily chosen and used to
train a SEQ-HMM. Applied to the test set, the resulting HMMs
exhibited errors of 35% and 30% for 92% and 88% of the binding
sites found, respectively. This SEQ-HMM was transformed using
the MD results into an MDS-HMM and tested (Fig. 7). The
scoring improved markedly, to 8% and 4% false positives at the
two levels, indicating that the MD transformation results in
substantive difference in the ability of an HMM to successfully
locate binding sites.

Discussion
The results of the preceding section indicate that HMMs based
on probabilistic roll�tilt dinucleotide models of sequence-
dependent DNA structure have a capability to discriminate
between known CAP binding and nonbinding sites and to predict
putative CAP binding sites in unknowns. Restricting HMMs to
sequence in regions of high consensus in which the protein makes
base-specific contacts further improved the discriminatory ca-
pabilities of the HMMs. The incorporation of dynamical struc-
ture in HMMs and thereby introducing a broader definition of
consensus was shown to improve the transferability of the
HMMs for a case in which sequence-only HMMs were over-
trained. In the following, we discuss the approximations and
sources of uncertainty in the method as implemented, and also
further implications and assessment of the results.

The key operational quantities in MDS-HMM methodology
are the transformed emission probabilities E� and E	. The
transformations per se, Eqs. 5 and 7, involve a product of
probabilities, and implicit in this step is that sequence and
dynamical structure are independent events. After the first

transformation process is complete (Eq. 6), the alphabet corre-
sponding to the emission probabilities is that of dynamical
structure (k, l) for each base pair in the site. This is unwieldy for
scoring per se, and resolution of this requires the second trans-
formation step, Eqs. 7 and 8. The summations by which the
transformed emission probabilities are reduced, Eqs. 6 and 8, are
averaging procedures—i.e., effectively integrations over aspects
of structure. MDS-HMMs thus seek consensus in a way that
combines the known sequence binding characteristics with in-
trinsic dynamical structure characteristics of the uncomplexed
DNA in whatever way this might contribute to binding.

Our training set in this study is of course relatively small, but
we feel the results obtained are such that at least provisional
conclusions are justified. The value added from incorporating
dynamical structure is evident most clearly in the improved
transferability of the transformed models, which we attribute to
the expanded definition of consensus to include dynamical
structure as well as sequence. Because any training set of finite
size engenders some degree of overtraining, it is especially
encouraging to find from our results on the model problem
described in the previous section that incorporating dynamical
structure appears to provide some compensation. The transfor-
mation procedure thus results in an improved HMM for iden-
tification of any DNA element characterized by its dynamic
properties.

One advantage of this approach is that the need for any
explicit consideration of phenomena such as intrinsic curvature,
bending, f lexibility, bendability, or induced fit is avoided. Each
of these ‘‘modelistic’’ terms is not well defined in an operational
sense (D.L.B., unpublished observation), and as a consequence
there is some confusion in the literature about what each of the
terms really signifies at the level of dynamical structure. For
example, the trinucleotide DNase and nucleosome positioning
scales used to derive DNA bendability do not correlate well with
each other (D.L.B., unpublished data). In this project, sequence-
dependent dynamical structure is simply defined in probability
form with respect to B-form DNA reference state, based not on
phenomenological definitions but on the calculated dynamical
structure and Boltzmann statistical mechanics of the system.

As for a higher-order demonstration case, the E. coli genome
was obtained from PubMed (http:��www.ncbi.nlm.nih.gov�
PubMed�) and converted from base pairs to base pair steps. The
converted genome (4.6 Mb) was scanned with the various HMMs
on a sliding window of 36 steps moved in single-base-pair
increments sequentially through the genome. Each fragment was
scored and compared based on the previously established scor-
ing scale. The results are shown in Fig. 8. The results identify a
plausible number of putative binding sites. However, one seeks
sequences that not only bind protein, but also have a regulatory
function. False regulatory sites could arise by chance or be
remnants of evolutionarily extinct genes. To be useful, an
expanded protocol should include information about how far the
regulatory element is located in sequence space with respect to

Fig. 7. Log odds scoring results on (A) a purposely overtrained SEQ-HMM
compared to (B) a corresponding MDS-HMM. See text for details.

Fig. 8. CSQ�MDS-HMM log odds scorings of the E. coli genome.
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the beginning of the ORF. In some cases, genes are already
annotated, but ORF-predicting programs are also currently
available (52), some of which are tailored to specific organisms.
System-specific searching could be achieved by the use of
additional MDS-HMMs with complex architectures allowing for
the different positions of the binding site with respect to the
transcriptional initiation site, and in conjunction with in vivo
expression data in the form of microarray analysis, could provide
a method for predicting groups of genes that are regulated by the
same transcription factor.

Summary and Conclusions
Boltzmann probability models of DNA sequence-dependent
structure from MD simulations on a set of oligonucleotides have
been incorporated into HMMs, resulting in a bioinformatics tool
that can recognize molecular structural signals as well as se-
quence in protein DNA binding sites on a genome. The binding
of CAP to cognate DNA sequences served as a well character-
ized model system for demonstrating and testing of the method,
and HMMs based on MD were used in an analysis of the E. coli
genome. The results indicate that HMMs based on probabilistic
roll�tilt dinucleotide models of sequence-dependent DNA struc-
ture have a capability to discriminate between known CAP
binding and nonbinding sites and to predict putative CAP
binding sites in unknowns. Restricting HMMs to sequence only
in regions of high consensus in which the protein makes base

specific contacts further improved the discriminatory capabili-
ties of the HMMs. The incorporation of dynamical structure in
HMMs and thereby the introduction of a broader definition of
consensus was shown to improve the transferability of the
HMMs. Collectively, these results provide supportive evidence
of a role for molecular geometry as well as sequence in regula-
tory mechanisms. The method described is readily extended to
definitions of sequence-dependent DNA structure involving
additional helicoidal parameters, and to include sequence con-
text effects with trinucleotide or higher-order models. In con-
clusion, we note that however encouraging one finds the results
of this study, this is not an unequivocal proof of concept because
agreement or plausible behavior compared with experiment
does not prove a model per se. The proposed methodology has
considerable potential applications in bioinformatics beyond
those described herein, but it is not yet possible to say how
general these results are. In particular, the issues we have raised
about overtraining (i.e., developing a proper training set with all
potentially interesting characteristics included) and robustness
of the method will require subsequent detailed and critical study.
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