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ABSTRACT

From microarray measurement, we seek differenti-
ation of mRNA expressions among different biolo-
gical samples. However, each array has a ‘block
effect’ due to uncontrolled variation. The statistical
treatment of reducing the block effect is usually
referred to as normalization. Our perspective is to
find a transformation that matches the distributions
of hybridization levels of those probes corresponding
to undifferentiated genes between arrays. We address
two important issues. First, array-specific spatial
patterns exist due to uneven hybridization and
measurement process. Second, in some cases a
substantially large portion of genes are differentially
expressed between a target and a reference array. For
the purpose of normalization we need to identify a
subset that exclude those probes corresponding to
differentially expressed genes and abnormal probes
due to experimental variation. Least trimmed squares
(LTS) is a natural choice to achieve this goal.
Substantial differentiation is protected in LTS by
setting an appropriate trimming fraction. To take
into account any spatial pattern of hybridization, we
divide each array into sub-arrays and normalize probe
intensities within each sub-array. We illustrate the
problem and solution through an Affymetrix spike-
in dataset with defined perturbation and a dataset
of primate brain expression.

INTRODUCTION

Microarray is a key technique in the study of functional
genomics. It measures abundance of mRNAs by hybridization
to appropriate probes on a glass chip. The current technique
can hold hundreds of thousands of probes on a single chip.
This allows us to have snapshots of expression profiles of a
living cell. In this article, we mainly consider high-density
oligonucleotide arrays. The Affymetrix GeneChip� uses
11–20 probe pairs, which are short oligonucleotides of
25 bp, to represent each gene, and as a whole they are called

a probe set (1,2). Each probe pair consist of a perfect match
(PM) and a mismatch (MM) probe that differ only in the
middle (13th) base. MM probes are designed to remove the
effects of non-specific binding, cross-hybridization and elec-
tronic noise. Ideally, probes are arranged on a chip in a random
fashion. But in customized arrays, this is not always true.

From microarray measurements, we seek differentiation of
mRNA expression among different cells. However, each array
has a ‘block effect’ due to variation in RNA extraction,
labeling, fluorescent detection, etc. Without statistical treat-
ment, this block effect is confounded with real expression
differentiation. The statistical treatment of reducing the
block effect is defined to be normalization. It is usually
done at the probe level. Several normalization methods for
oligonucleotide arrays have been proposed and practiced. One
approach uses lowess (3) to correct for non-central and non-
linear bias observed in M–A plots (4). Another class of
approaches correct for the nonlinear bias seen in Q–Q plots
(5–7). As discussed in (6,8), several assumptions must hold in
the methods using quantiles. First, most genes are not differ-
entially regulated; second, the number of up-regulated genes
roughly equals the number of down-regulated genes; third, the
above two assumptions hold across the signal–intensity range.
In this article, we consider normalization that is resistant to
violation of these assumptions.

Our perspective of normalization is that of blind inversion
(9). The basic idea is to find a transformation for the target
array so that the joint distribution of hybridization levels of the
target and reference array matches a nominal one. Two dif-
ferent ideas exist to achieve this goal. First, quantiles allows us
to compare distributions and the Q–Q plot is the standard
graphical tool for the purpose. The normalization proposed
in (5–7) aims to match the marginal distribution of hybridiza-
tion levels from the target with that from reference. Although
slight and subtle difference exists between the two principles,
quantile methods work well for arrays with little differenti-
ation. The second idea is regression, either linear or nonlinear
(4,10). We will adopt the regression perspective in this article,
for it is easy to deal with the situations in which the assump-
tions mentioned earlier are violated.

When we compare two arrays in which a substantially large
portion of genes are differentially expressed, we need to
identify a ‘base’ subset for the purpose of normalization.
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This subset should exclude those probes corresponding to
differentially expressed genes and abnormal probes due to
experimental variation. A similar concept ‘invariant set’ is
defined in (11–13). We use least trimmed squares (LTS)
(14) to identify the base for normalization and to estimate
the transformation in a simultaneous fashion. Substantial
differentiation is protected in LTS by setting an appropriate
trimming fraction. The exact LTS solution is computed by a
fast and stable algorithm we developed recently (15).

Array-specific spatial patterns may exist due to uneven
hybridization and measurement process. For example, reagent
flow during the washing procedure after hybridization may be
uneven; scanning may be non-uniform. We have observed
different spatial patterns from one array to another. To take
this into account, we divide each array into sub-arrays that
consist of a few hundred probes and normalize probe intens-
ities within each sub-array. Other spatial normalization, such
as that in (6), only considers the spatial effect in background.
In comparison, we try to adjust for spatial difference both in
background and in scale. We show that match of distribution at
the array level can be achieved by normalization at the sub-
array level to a great extent. In cDNA arrays, local subgrid
normalization has been proposed (16).

MATERIALS AND METHODS

Microarray data

The Affymetrix Spike-in dataset includes 14 arrays obtained
from Affymetrix HG-U95 chips. Fourteen genes in these
arrays are spiked-in at given concentrations in a cyclic fashion
known as a Latin square design. The data are available from
http://www.affymetrix.com/support/technical/sample_data/
datasets.affx. In this paper, out of the complete dataset we
chose eight arrays and split them into two groups. The first
group contains four arrays: m99hpp_av06, 1521n99hpp_av06,
1521o99hpp_av06 and 1521p99hpp_av06. The second group
contains four arrays: q99hpp_av06, 1521r99hpp_av06,
1521s99hpp_av06 and 1521t99hpp_av06. Later, we will
abbreviate these arrays by M, N, O, P, Q, R, S, T. As a result,
the concentrations of 13 spiked-in genes in the second group
are 2-fold lower. The concentrations of the remaining spike-in
genes are respectively 0 and 1024 in the two groups. In addi-
tion, two other genes are so controlled that their concentrations
are also 2-fold lower in the second group compared with the
first one.

From the same Affymetrix webpage, two replicates using
yeast array YG-S98 are also available: Yeast-2-121501 and
Yeast-2-121502. We use them to study the variation between
array replicates.

Expression profiles offer a way to study the difference
between humans and their closest evolutionary relatives.
We consider the data (17) available from http://email.eva.
mpg.de/~khaitovi/supplement1.html. Two brain samples are
extracted from each of three humans, three chimpanzee and
one orangutan. In what follows we only show results on two
human individuals, HUMAN 1 and HUMAN 2, one chimpan-
zee, CHIMP. 1 and the orangutan, ORANG. The mRNA
expression levels are measured by hybridizing them with
the Affymetrix human chip HG-U95.

Statistical principle of normalization

Suppose we have two arrays: one reference and one target.
Denote the measured fluorescence intensities from the target
and reference arrays by {Uj,Vj}. Denote true concentrations of
specific binding molecules by ( ~UUj, ~VVj). Ideally, we expect that
Uj‚Vj

� �
¼ ~UUj‚ ~VVj

� �
. In practice, measurement bias exists due

to uncontrolled factors and we need a normalization procedure
to adjust measurement. Next, we have another look at normal-
ization. Consider a system with ( ~UUj, ~VVj) as input and (Uj, Vj) as
output. Let h ¼ (h1, h2) be the system function that accounts
for all uncontrolled biological and instrumental bias; namely,

Uj ¼ h1
~UUj

� �
‚

Vj ¼ h2
~VVj

� �
:

�

The goal is to reconstruct the input variables ( ~UUj, ~VVj) based
on the output variables (Uj, Vj). It is a blind inversion problem
(9), in which both input values and the effective system are
unknown. The general idea is to find a transformation that
matches the distributions of input and output. This leads us
to the question: what is the joint distribution of true concen-
trations ( ~UUj, ~VVj)? First, let us assume that the target and ref-
erence array are biologically undifferentiated. Then the
differences between the target and reference are purely caused
by random variation and uncontrolled factors. In this ideal
case, it is reasonable to assume that the random variables
f ~UUj‚ ~VVj

� �
‚ j ¼ 1‚ � � � g) are independent samples from a joint

distribution ~YY whose density centers around the straight line
~UU ¼ ~VV , namely, E ~VV j ~UU

� �
¼ ~UU . The average deviations from

the straight line measure the accuracy of the experiment. If the
effective measurement system h is not an identity one, then the
distribution of the output, denoted by Y, could be different
from ~YY. An appropriate estimate ĥh of the transformation
should satisfy the following: the distribution ĥh�1 Yð Þ matches
~YY, which centers around the line ~VV ¼ ~UU . In other words, the
right transformation straightens out the distribution of Y.

Next we consider the estimation problem. Roughly speak-
ing, only the component of h1 relative to h2 is estimable. Thus
we let v ¼ h2 ~vvð Þ ¼ ~vv. In addition, we assume that h1 is a
monotone function. Denote the inverse of h1 by g, then we
expect the following is valid.

E ~VV j ~UU
� �

¼ ~UU‚ or E Vjg Uð Þ½ 
 ¼ g Uð Þ:

PROPOSITION 1. Suppose the above equation is valid. Then g
is the minimizer of minl E(V � l(U))2.

According to the well-known fact of conditional expecta-
tion, E[V|g(U)] ¼ g(U) minimizes E[V � l1(g(U))]2 with
respect to l1. Next write l1(g(U)) ¼ l(U). This fact suggests
that we estimate g by minimizing

P
j vj�g uj

� �� �2
. When

necessary, we can impose smoothness on g by appropriate
parametric or non-parametric forms.

Differentiation fraction and undifferentiated probe set

Next we consider a more complicated situation. Suppose that a
proportion l of all the genes are differentially expressed while
other genes are not except for random fluctuations.
Consequently, the distribution of the input is a mixture of
two components. One component consists of those undiffer-
entiated genes, and its distribution is similar to ~YY. The other
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component consists of the differentially expressed genes and is
denoted by ~GG. Although it is difficult to know the form of ~GG as
a priori, its contribution to the input is at most l. The distri-
bution of the input variables ( ~UUj, ~VVj) is the mixture
1�lð Þ ~YY þ l~GG. Under the system function h, ~YY and ~GG are

transformed respectively into distributions denoted by Y
and G, i.e. Y ¼ h ~YY

� �
, G ¼ h ~GG

� �
. This implies that the dis-

tribution of the output (Uj, Vj) is (1 � l)Y + lG. If we can
separate the two components Y and G, then the transformation
h of some specific form could be estimated from the know-
ledge of ~YY and Y.

Spatial pattern and sub-arrays

Normalization can be carried out in combination with a strati-
fication strategy. For cDNA arrays, researchers have proposed
to group spots according to the layout of array-printing so that
data within each group share a more similar bias pattern. And
then normalization is applied to each group. This is referred to
as within-print-tip-group normalization in (4). On a high-
density oligonucleotide array, tens of thousands of probes
are laid out on a chip. To take into account any plausible
spatial variation in h, we divide each chip into sub-arrays,
or small squares, and carry out normalization for probes within
each sub-array. To get over any boundary effect, we allow sub-
arrays to overlap. A probe in overlapping regions gets multiple
adjusted values from sub-arrays it belongs to, and we take their
average.

Parameterization

Since each sub-array contains only a few hundred probes, we
choose to parameterize the function g by a simple linear func-
tion a + bu, in which the background a and scale b represent
uncontrolled additive and multiplicative effects, respectively.

Simple least trimmed squares

Our target solution consists of two parts: (i) identify the ‘base’
subset of probes; (ii) estimate the parameters in the linear
model. We adopt LTS to solve the problem. Starting with a
trimming fraction r, set h ¼[n(1 � r)] + 1. For any (a,b),
define r(a,b)i ¼ vi � (a + bui); Let H(a,b) be a size-h index
set that satisfies the following property: |r(a,b)i|<|r(a,b)j|, for
any i 2 H(a,b) and j =2 H(a,b). Then the LTS estimate minimizesX
i2H a‚ bð Þ

r a‚bð Þ2
i :

The solution of LTS can be characterized by either the
parameter (a,b) or the size-h index set H. It is this dual
form that we find it ideal for our purpose. Statistically, LTS
is a robust solution for regression problems. On the one hand, it
can achieve any given breakdown value by setting a proper
trimming fraction. On the other hand, it has

ffiffiffi
n

p
-consistency

and asymptotic normality under some conditions. In addition,
the LTS estimator is regression, scale, and affine equivariant
(14). Despite its good properties, LTS has not been widely
used because no practically good algorithm exists to imple-
ment computation. Recently, we developed a fast and stable
algorithm to compute the exact LTS solution to simple linear
problems (15). On an average desktop PC, it solves LTS for a
dataset with several thousand points in 2 s.

An LTS solution naturally associates with a size-h index set.
By setting a proper trimming fraction r, we expect the cor-
responding size-h set is a subset of the undifferentiated probes
explained earlier. Obviously, the trimming fraction r should
be larger than the differentiation fraction l.

Multiple arrays and reference

In the case of multiple arrays, the strategy of normalization
hinges on the selection of reference. In some experiments, a
master reference can be defined. For example, the time zero
array can be set as a reference in a time course experiment. In
experiments of comparing tumor and normal tissues, the nor-
mal sample can serve as a reference. In other cases, the median
array or mean array are options for references. Another strat-
egy is: first, randomly choose two arrays, one reference and
one target, for normalization; use the normalized target array
from the last normalization as the reference for the next nor-
malization; iterate this procedure until all arrays have been
normalized once; and repeat this loop for several runs. Here-
after we adopt the median polishing method in RMA (18) to
summarize expression levels from multiple arrays.

The direct result of normalization is the calibration of rel-
ative expression levels of an array with respect to a reference.
Suppose we have an ideal reference array with known con-
centrations of binding molecules for all probes. Then in theory,
we can measure the absolute expression values of any sample
as long as we can normalize its hybridization arrays with the
reference.

RESULTS

Implementation and SUB-SUB normalization

We have developed a module to implement the normalization
method described above, referred as SUB-SUB normalization.
The core code is written in C, and we have interfaces with
Bioconductor in R. The input of this program is a set of
Affymetrix CEL files and outputs are their CEL files after
normalization. Three parameters need to be specified: sub-
array size, overlapping size and trimming fraction. The
sub-array size specified the size of the sliding window. The
overlapping size controls the smoothness of window-sliding.
Trimming fraction specifies the breakdown value in LTS. An
experiment with an expected higher differentiation fraction
should be normalized with a higher trimming fraction.

Parameter selection

We have tried many combinations of the three parameters on
several datasets. In some reasonable range, the interaction
between the parameters is negligible. In general, the smaller
the sub-array size is, the more accurately we can capture
spatial bias while the less number of probes are left for estima-
tion. Thus, we need to trade off bias and variation. From our
experiments, we recommend 20 · 20 for Affymetrix HG-U95
and HG-U133 chips. The value of overlapping size is the same
for both directions, and we found its effect on normalization is
the least among the three parameters. Our recommendation is
half of the sub-array size. For example, it is 10 if sub-array size
is 20 · 20. According to our experience, it can even be set to 0
(no overlapping between adjacent sub-arrays) to speed up
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computation without obvious change to normalization. The
selection of trimming fraction should depend on samples to
be compared in the experiments and quality of microarray
data. For an experiment with 20% differentiated genes, we
should set a trimming fraction >20%. Again we need a trade
off between robustness and accuracy in the selection of trim-
ming fraction. On the one hand, to avoid breakdown of LTS,
we prefer large trimming fractions. On the other hand, we want
to keep as many probes as possible to achieve accurate estim-
ates of a and b. Without any a priori, we can try different
trimming fractions and look for a stable solution. Our recom-
mendation for starting value is 50%.

Affymetrix spike-in dataset

We first investigate the existence of spatial pattern. The HG-
U95 chip has 640 · 640 spots on each array. We divided each
array into sub-arrays of size 20 · 20. We run simple LTS
regression on the target with respect to the reference for
each sub-array. This results in an intercept matrix and a
slope matrix of size 32 · 32, representing the spatial differ-
ence between target and reference in background and scale.
We first take Array M as the common reference. The slope
matrices of Array P and M are shown in Figure 1A and B,
respectively, and their histograms are shown in Figure 1C
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Figure 1. The slope matrices of two arrays show different spatial patterns in scale. The common reference is Array M. (A) Array P versus M; (B) Array N versus M.
(C and D) Their histograms are shown at bottom correspondingly.
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and D. Two quite different patterns are observed. Similar
phenomenon exists in patterns of a. The key observation is
that spatial patterns are array-specific and unpredictable to a
great extent. This justifies the need of adaptive normalization.

We carry out SUB-SUB normalization to each of the eight
arrays using Array M as the reference. We experimented with
different sub-array sizes, overlapping sizes and trimming frac-
tions. Figure 2 shows the M–A plots summarized from the
eight arrays after normalization, namely, the log-ratios of
expressions between the two groups versus the abundance.
The sub-array size is 20 · 20, the overlapping size is 10 and
the trimming factor are 0.4 and 0 in the subplots Figure 2A and
B, respectively. Our result indicates that both the sub-array
size (data not shown) and trimming fraction matter substan-
tially for normalization. In other words, stratification by spatial
neighborhood and selection of breakdown value in LTS do
contribute a great deal to normalization. Overlapping size has
a little contribution in this dataset. Our method identifies 14 of
the 16 differentially expressed spike-in gene with only a few
false positives (Figure 2A).

Perturbed spike-in dataset

SUB-SUB normalization protects substantial differentiation
by selecting an appropriate trimming fraction in LTS. To
test this, we generate an artificial dataset with relatively
large fraction of differentiation by perturbing the HG-U95
spike-in dataset. Namely, we randomly choose 20% genes
and increase their corresponding probe intensities by
2.5-fold in the four arrays in the second group. We then
run SUB-SUB normalization on the perturbed dataset with
various trimming fractions. The results are shown in
Figure 3A, B, C, D for four trimming fractions, 50, 30, 20
and 10%. The normalization is satisfactory when the trimming
fraction is >30%, or 10% larger than the nominal differenti-
ation fraction. The extra fraction may account for random
variation. In another case, we randomly choose 20% genes

and increase their corresponding probe intensities by 1.5-fold.
The results corresponding to the trimming fraction 50 and 0%
are shown in Figure 3E and F respectively. We note that
the black dots are blocked by red ones in these two subplots
when they overlap.

Primate brain expression dataset

Compared with other primate brains, such as chimpanzee and
orangutan, a relatively high percentage of genes are differen-
tially expressed in human brains, and most of them are up-
regulated in human brains (19,20). Moreover, the chimpanzee
and orangutan samples are hybridized with human HG-U95
chips, so it is reasonable to assume if there were any meas-
urement bias in primate mRNA expressions compared with
humans, it would be a downward bias. Figure 4A–D shows the
density functions of log-ratios of gene expressions for four
cases: HUMAN 1 versus ORANG.; HUMAN 2 versus
ORANG.; HUMAN 1 versus CHIMP. 1; HUMAN 1 versus
HUMAN 2. The results from SUB-SUB (trimming fraction is
20%) and quantile normalization are plotted in red and blue,
respectively. When comparing humans with primates, the dis-
tribution resulted from the SUB-SUB method is to the right of
that resulted from the quantile method. This is more obvious in
the cases of humans versus orangutan, which are more gen-
etically distant from each other than other cases do; see
Figure 4E and F. As expected, the distributions skew to the
right and the long tails on the right might have a strong influ-
ence on the quantile normalization, which aims to match mar-
ginal distributions from humans and primates in a global
fashion. However, in the cases of HUMAN 1 versus
ORANG. and HUMAN 2 versus ORANG., the modes corres-
ponding to the quantile method are in the negative territory
while the modes corresponding to SUB-SUB method are clo-
ser to zero. The results from SUB-SUB normalization seem to
be more reasonable. Furthermore, the difference in the case of
HUMAN 1 versus HUMAN 2 is more distinct than that in the
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Figure 2. M–A plots of spike-in data after SUB-SUB normalization: (A) trimming fraction is 0.4; (B) trimming fraction is 0.

Nucleic Acids Research, 2005, Vol. 33, No. 17 5569



case of HUMAN 1 versus CHIMP. 1; see the two subplots at
the bottom. The analysis in (17) also indicates that HUMAN
2 differs more from other human samples than the latter differ
from the chimpanzee samples. We checked the M–A plot of
HUMAN2 versus ORANG after SUB-SUB normalization
(figure not shown) and observed that HUMAN 2 has more
up-regulated genes than down-regulated genes compared with
ORANG.

Variation reduction by sub-array normalization

Stratification is a statistical technique to reduce variation. Sub-
array normalization can be regarded as a way of stratification.
We normalize the yeast array 2-121502 versus 2-121501 by
various normalization methods available from Bioconductor.
Since the two arrays are replicates, the difference between
them is due to experimental variation. In the resulting M–A
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Figure 3. (A–F)M–A plots of perturbed spike-in dataset after SUB-SUB normalization. The x-axis is the average of log-intensities from two arrays. The y-axis is their
difference after normalization. In the top four subplots, 20% randomly selected genes have been artificially up-regulated by 2.5-fold in Array Q, R, S and T.
The differentiated genes are marked red, and undifferentiated genes are marked black. The trimming fractions in the subplots are: A, 50%; B, 30%; C, 20%; D, 10%.
In the two subplots at the bottom, 20% randomly selected genes have been artificially up-regulated by 1.5-fold in Array Q, R, S and T. The trimming fractions are:
E, 50%; F, 0%.
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plots, we fit lowess (3) curves to the absolute values of M,
or |M|. These curves measure the variation between the two
arrays after normalization (see Figure 5). The sub-array
normalization achieves the minimal variation. As variation
is reduced, signal-to-noise ratio is enhanced and power of
significance tests is increased.

Other normalization procedures can be applied at the
sub-array level as well. For example, if differentiation is
not substantial, we can apply quantile, lowess, qspline nor-
malization, etc. We note that different statistical methods,
especially those non-parametric ones, may have specific
requirements on the sample size. To achieve statistical effect-
iveness, we need to select the size of sub-array for each
normalization method.

DISCUSSION

External controls

In cDNA arrays, some designs use external RNA controls to
monitor global messenger RNA changes, (16). In our view,
external RNA controls play the role of undifferentiated probe
sets. To carry out local normalization, we need quite some
number of external controls for each subgrid. In current
Affymetrix arrays, this is not available.

Differentiation fraction

In many microarray experiments, our primary goal is the iden-
tification of differentially expressed genes. But the degree of
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Figure 4. The densities of expression log-ratios between: (A) HUMAN 1 versus ORANG.; (B) HUMAN 2 versus ORANG.; (C) HUMAN 1 versus CHIMP. 1;
(D) HUMAN 1 versus HUMAN 2. The results from SUB-SUB normalization (trimming fraction is 20%) and quantile normalization are represented by dotted and
solid line, respectively.

Nucleic Acids Research, 2005, Vol. 33, No. 17 5571



differentiation may be quite different from one case to another.
Next, we briefly mention some cases in which a large fraction
of genes may be differentially expressed between two samples.
First, in one study of the life span of yeast, we compare
expression profiles of a wild-type strain with another, such
as sch9D. The metabolism in the knock-out strain is greatly
reduced and this leads to life span extension (21). Second, gene
chips for some organisms are not available. Cross-species
hybridization is a useful strategy for comparative functional
genomics. The comparison of brain expressions of humans
versus primates discussed earlier is one such example.
Third, some customized arrays are so designed that only
probes of hundreds of genes relating to a specific biological
pathway are included for the consideration of cost. SUB-SUB
normalization uses LTS to identify a ‘base’ subset of probes
for adjusting difference in background and scale. In theory, the
method can be applied to microarray experiments with
differentiation fractions as high as 50%. In addition, our
method does not assume an equal percentage of up- and
down-regulated genes. In the mean time, LTS keeps the stat-
istical efficiency advantage of least squares.

Nonlinear array transformation versus linear
sub-array transformation

To eliminate the nonlinear phenomenon seen in M–A plots or
Q–Q plots, methods such as lowess, qspline and quantile nor-
malization use nonlinear transformation at the global level
(6,7,22). In comparison, we apply a local strategy in SUB-
SUB normalization. One array is split into sub-arrays and a
simple linear transformation is fitted for each sub-array. With
an appropriate sub-array size and trimming fraction, the non-
linear feature observed in M–A plots is effectively removed by
linear sub-array transformation to a great extent. We speculate
that the nonlinear phenomenon is partially caused by spatial
variation. One simulation study also supports this hypothesis,
but further investigation is required. Next, we give one
remark regarding nonlinearity. In normalization, we adjust

the intensities of a target array compared with those of a
reference. Even though the dye effect is a nonlinear function
of spot intensities, a linear transformation may be a good
approximation as long as the majority of probe intensities
from the target and reference are in the same range and
thus have similar nonlinear effect. Occasionally when the
amount of mRNA from two arrays is too different, slight
nonlinear pattern is observed even after sub-array normaliza-
tion. To fix the problem, we can apply global lowess after the
sub-array normalization. Alternatively, to protect substantial
differentiation, we can apply a global LTS normalization sub-
ject to a differentiation fraction once more.

Transformation

The variance stabilization technique was proposed in relation
to normalization (23,24). We have tested SUB-SUB
normalization on the log-scale of probe intensities, but the
result is not as good as that obtained on the original scale.
After normalization, a summarization procedure reports
expression levels from probe intensities. we have tried the
median polishing method (18) on the log-scale. Alternatively,
we can do a similar job on the original scale using MBEI (25).

Usage of MM probes

Some studies suggested using PM probes only in Affymetrix
chips (26). We checked the contribution of MM probes and
PM probes to the subsets associated with LTS regressions from
all sub-arrays. Figure 6 shows the distribution of the percent-
age of MM probes in the subsets identified by LTS. Our result
shows that MM probes contribute slightly more than PM
probes in LTS regression, mostly in the range 46–56%.

Diagnosis

The detection of bad arrays is a practical problem in the routine
data analysis of microarrays. In comparison with the obvious
physical damages, such as bubbles and scratches, subtle
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abnormalities in hybridization, washing and optical noise are
more difficult to detect. By checking values of a and b in LTS
across sub-arrays, we can detect bad areas in an array and
save information from the rest areas. Consequently, we can
report partial hybridization result instead of throwing away an
entire array.
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