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ON THE CLASSIC AND MODERN THEORIES OF MATCHING
J- ] McDoweLL

EMORY UNIVERSITY

Classic matching theory, which is based on Herrnstein’s (1961) original matching equation and
includes the well-known quantitative law of effect, is almost certainly false. The theory is logically
inconsistent with known experimental findings, and experiments have shown that its central constant-k
assumption is not tenable. Modern matching theory, which is based on the power function version of
the original matching equation, remains tenable, although it has not been discussed or studied
extensively. The modern theory is logically consistent with known experimental findings, it predicts the
fact and details of the violation of the classic theory’s constant-k assumption, and it accurately describes
at least some data that are inconsistent with the classic theory.
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Thirty-five years ago, Richard J. Herrnstein
(Herrnstein, 1970) proposed the theory of
matching, according to which all behavior can
be conceptualized as choice, governed by the
matching equation,
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In this equation the Rs represent response
rates or counts, the rs represent reinforcement
rates or counts, and the numerical subscripts
refer to the two components of a concurrent
schedule (Herrnstein, 1961). The equation
asserts that organisms allocate their behavior
across concurrently available response alter-
natives in the same proportion that reinforce-
ments are allocated across those alternatives.

Herrnstein (1970) turned the purely de-
scriptive matching equation into a theory by
applying it to single-alternative schedules. He
conceptualized these as two-component con-
current schedules consisting of instrumental
responding as one alternative, and back-
ground or extraneous responding as the other
alternative. For this conceptualization of the
single-alternative case, the matching equation
can be written
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where R and r refer to the instrumental
response and reinforcement rates or counts,
and R, and 7, refer to the extraneous response
and reinforcement rates or counts. Assuming
a constant total amount of behavior to
allocate, k, then R+ R, = k, and the equation
can be written

kr
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This is the well-known quantitative law of effect
(de Villiers, 1977; de Villiers & Herrnstein,
1976), which has been widely and very succes-
sfully applied to single-alternative responding
(McDowell, 1988). It follows from Equation 2
that responding in each component of a con-
current schedule must be described by
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where the constant total amount of behavior,
k, is allocated among three response alterna-
tives, including the extraneous alternative.
This brings the theory full circle inasmuch as
Equations 3 and 4 can be combined to yield
Equation 1, thereby establishing the theory’s
consistent account of single- and multiple-
alternative environments.

Equations 1 to 4 constitute the fundamental
statement of matching theory in its classic, or
strict, formulation. The equations are listed
in the left panels of Figure 1 for reference. A
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Fig. 1. The equations of classic (left panels) and modern (right panels) matching theory. The equations are referred
to in the text by the numbers that appear in the upper left corner of each panel. The modern equations entail bias
parameters and exponents, whereas the classic equations do not. The equations in the first row are the foundational
equations of each theory, from which the remaining equations are derived. The modern equations reduce to the classic
equations when all bias parameters and exponents equal unity (Equations 5 and 9 both reduce to the ratio form of
Equation 1, that is, R/ Ry = /7).
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great deal of research since 1970 has shown
that Equation 1 does not describe concurrent
schedule data very well (Baum, 1974), but that,
oddly, Equation 2 describes single schedule
data quite well (McDowell, 1988). Equations 3
and 4 have not been studied extensively. As
will be discussed in more detail later, the
general success of Equation 2 is illogical, given
the limited success of the equation from which
it was derived (Equation 1).

The shortcomings of Equation 1 (e.g., Myers
& Myers, 1977) quickly gave rise to a new
form of descriptive matching in concurrent
schedules (Baum, 1974; Staddon, 1968, 1972),

namely, the now-familiar power function,
R b n\ ¢
R, n)’
that has been very successful in describing
behavior on concurrent schedules. Just as
Equation 1 was the starting point of classic
matching theory, Equation 5 is the starting
point of what might be referred to as modern,
or generalized, matching theory. The purpose
of this paper is to examine the modern theory
of matching, which has neither been discussed

nor studied extensively, and to compare it with
the classic theory.

(5)

THE MODERN THEORY

The modern theory of matching is obtained
in the same way that Herrnstein obtained the
classic theory, except that the point of de-
parture is Equation 5 rather than Equation 1.
The details of the calculations have been
presented elsewhere (McDowell, 1986). The
first result is a single-alternative equation
analogous to Equation 2,
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Just as in classic matching theory, this equation
is obtained by assuming that a constant
amount of behavior, k, is allocated among
the available response alternatives, which in
the single-alternative case are the instrumental
alternative and the aggregate extraneous
alternative. Notice that the total amount of
behavior, k, and reinforcement for responding
on the extraneous alternative, 7,, appear in this
equation just as they appear in Equation 2.
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New to Equation 6 is the exponent, g, and the
bias parameter, b, which are inherited, so to
speak, from Equation 5 (McDowell, 1986).

Just as single-alternative forms for each
component of a concurrent schedule were
obtained from Equation 2 in the classic theory,
analogous single-alternative forms for each
component of a concurrent schedule can be
obtained from Equation 6 in the modern
theory (McDowell, 1986). These are
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Each equation expresses response rate in one
component of a concurrent schedule as a joint
function of the reinforcement rates in both
components (r and %), just as do the
analogous classic Equations 3 and 4. Notice
also that k and 7, appear in Equations 7 and 8
just as they do in Equations 3 and 4. New to
Equations 7 and 8 are three bias parameters,
b, bie, b, and three exponents, @, @, Gs,.
One bias parameter and one exponent apply
to each of the three possible pairs of re-
inforcement rates that are compared as ratios
in Equations 7 and 8. The subscripts refer to
the response alternatives; 1 and 2 refer to the
two components of the concurrent schedule
and ¢ refers to the extraneous alternative.
Reinforcement rates from the two components
of the concurrent schedule, n and %, are
compared as a ratio in the second term inside
the square brackets of both Equations 7 and 8.
Notice that the second term inside the square
brackets of Equation 8 is the reciprocal of the
second term inside the square brackets of
Equation 7, and that this term also constitutes
the right side of Equation 5 (although the
subscripts on the bias parameter and exponent
are omitted from Equation 5). Reinforcement
rates from the first component of the concur-
rent schedule and from the extraneous alter-
native, r, and 7,, are compared as a ratio in
the first term inside the square brackets of
Equation 7. Reinforcement rates from the
second component of the concurrent sched-
ule and from the extraneous alternative, », and
7,, are compared as a ratio in the first term

(8)
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inside the square brackets of Equation 8. Each
of these ratios is modified by the appropriate
bias parameter and exponent.

Itis important to recognize that the forms of
Equations 6 to 8 are not arbitrary. Their
structure is a formal consequence of applying
the logic of Herrnstein’s matching theory to
Equation 5 (McDowell, 1986). Just as Equa-
tions 3 and 4 can be combined to obtain
Equation 1, the quotient of Equations 7 and 8
produces Equation 5, which brings the mod-
ern theory full circle, and demonstrates the
consistency of the modern theory’s single- and
multiple-alternative accounts.

Equations 5 to 8 of the modern theory are
analogous to Equations 1 to 4 of the classic
theory. Equations 1 and 5 are the foundational
descriptive equations for each version of the
theory. The remaining equations are derived
from the foundational equation via the same
logic for both classic and modern theories.
McDowell (1986) showed that the modern
theory entails a fifth equation, which applies to
concurrent schedules. This equation,
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is similar to Equation 5, but includes the other
two bias parameters and the other two
exponents from the set of parameters entailed
by the modern theory. McDowell (1986)
showed that Equation 9 is a consequence of
matching theory’s requirement that all behav-
ior be allocated among the available response
alternatives, with none left over. Notice that
the right side of Equation 9 is the product of
two reinforcement rate ratios, each raised to
the appropriate exponent and multiplied by
the appropriate bias parameter. The first ratio
in the equation compares the reinforcement
rates from the second component of the
concurrent schedule and from the extraneous
alternative, 7 and r,. This ratio, together with
its exponent and bias parameter, is identical to
the first term inside the square brackets in
Equation 8. The second ratio compares the
reinforcement rates from the first component
of the concurrent schedule and from the
extraneous alternative, n, and r,. This ratio,
together with its exponent and bias parameter,
is identical to the reciprocal of the first term
inside the square brackets in Equation 7.
Although Equations 5, 7, 8, and 9 are nota-
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tionally complicated, their structure is simple.
They consist entirely of unity, the parameter £,
and the following three quantities and their
reciprocals:
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The five equations of modern matching theory
are listed in the right panels of Figure 1 for
reference.

The equations of classic matching theory are
special cases of the equations of modern
matching theory. The latter reduce to the
former when all bias parameters and expo-
nents equal unity. Specifically, Equations 5
and 9 both reduce to the ratio form of
Equation 1, Equation 6 reduces to Equation
2, and Equations 7 and 8 reduce to Equations

3 and 4.

THE LOGIC OF MATCHING THEORY

Thirty-five years of research on matching
theory have made at least three things clear
(McDowell, 1988, 1989): Equation 5, the
foundational equation of the modern theory,
accounts for concurrent-schedule data very
well; Equation 1, the foundational equation of
the classic theory does not; and Equation 2,
the single-alternative equation of the classic
theory accounts for single-schedule data very
well.

Given this empirical information, the first
test of matching theory must be logical. Con-
sider the classic theory. Because the founda-
tional equation upon which this theory is built
is not generally consistent with data, it seems
unlikely that the theory (Equations 2 to 4) is
correct. The classic theory does not allow for
asymmetries in choice (i.e., a bias parameter
not equal to 1), or for undercontrol or
overcontrol of response allocation by reinforc-
er distribution (i.e., an exponent on the ratio
of reinforcement rates not equal to 1). These
are the reasons the foundational equation of
the theory (Equation 1) has limited applica-
bility; it makes sense to suppose that these
reasons limit the remainder of the equations
as well. For example, how likely is it that a food-
deprived animal shows no bias for food
reinforcement over extraneous background
reinforcement on a single schedule? Simi-
larly, we know that the exponent on power
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function matching (Equation 5) is typically
about 0.8 for behavior on concurrent sched-
ules (Baum, 1974), indicating a degree of
undercontrol of response allocation by re-
inforcer distribution. Why should the same not
be true in single schedules? The modern
theory of matching permits asymmetries in
choice, and undercontrol or overcontrol of
response allocation by reinforcer distribution.
Moreover, the foundational equation of this
theory (Equation 5) is known to provide an
excellent description of behavior on concur-
rent schedules. This does not mean, of course,
that the modern theory is necessarily correct; it
only means that the theory is not logically
inconsistent with experimental findings and is
therefore logically tenable.

This logical analysis is marred by the curious
fact that Equation 2, the classic theory’s single-
alternative equation, is quite successful in
describing data (McDowell, 1988). But how
can it be that there is no bias on single
schedules, and that there is perfect control of
response allocation by reinforcer distribution?
Let us look first at bias. Equation 2, and
Equation 6 with the exponent, «, set equal to 1
are

k k
N , and R= !
r+r7,

T,
r+ b

Fitting Equation 2 entails estimating k and 7,.
Fitting the above version of Equation 6 entails
estimating k and 7,/b. Notice that 7, and
b cannot be estimated independently; only
their ratio can be estimated. Suppose for
a moment that Equation 6 is true and that
an experimenter fits it to a set of data,
obtaining values for k and r,/b. Now suppose
the experimenter increases the bias for the
instrumental alternative by increasing the
magnitude of the reinforcer, and then obtains
a second set of data using the larger magni-
tude, and a second set of estimates of %k and
7,/b. Because the bias parameter has in-
creased, the estimated value of r,/b will be
smaller for the second set of data. A classic
theorist who fits Equation 2 to these data will
find that r, has decreased, and will explain this
by saying that the units on 7, have changed,
that is, 7, is now being measured in the larger
units of the new instrumental reinforcer and
so the same background level of reinforce-
ment is described by a smaller number.
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Ignoring for the time being the merits of the
classic theorist’s point of view, this example
shows that the hyperbolic form of Equation 2
will provide an excellent description of single
schedule data in the presence of bias that is
consistent with the modern theory. In fact, the
description provided by Equation 2 (specifi-
cally, the percentage of variance accounted
for) will be identical to the description pro-
vided by the version of Equation 6 given above.
According to the modern theory, when bias
changes, the value of the parameter in the
denominator of either equation will change in
the opposite direction. The form of the
equation is not affected, and hence the two
equations will provide identical fits.

Unlike the bias parameter, the exponent in
Equation 6 does change the form of the func-
tion, but not by much. Consider Equation 6
without bias (i.e., b = 1):

kr?
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Simulated data calculated from this equation
with k = 100, r, = 50 and a = 0.65 are plotted
as filled circles in the top left panel of Figure 2.
The smooth curve is the best fit of the classic
single-alternative form, Equation 2. The pro-
portion of variance accounted for by this
equation is 0.98, clearly what would be re-
ferred to as a good fit. But, as is evident from
the figure, the residuals left by the fit are not
random; the data overshoot the curve at low
and high reinforcement rates and undershoot
it at intermediate reinforcement rates. The
plot of the standardized residuals against the
predicted response rates in the upper right
panel of Figure 2 reveals this systematic
pattern in the residuals. It can be shown that
the closer the exponent is to unity, the smaller
the deviations from the classic Equation 2.
Consider an exponent of 0.8, which is about
what one would expect on the basis of
concurrent schedule research. Simulated data
calculated using this exponent, and the same k
and 7, as before, with random homoscedastic
gaussian error added to the response rates
(standard deviation = four responses per
minute), produces the data points that are
plotted as filled circles in the bottom left panel
of Figure 2. Again, the smooth curve is the best
fit of the «classic single-alternative form,
Equation 2, which accounts for 97% of the
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Fig. 2. The filled circles in the left panels are simulated response rates calculated from Equation 6 with £ = 100, », =
50 and a = 0.65 (top) or 0.80 (bottom). In the top left panel the response rates are errorless; in the bottom left panel the
response rates include random homoscedastic gaussian error with a standard deviation of four responses per minute. The
smooth curve in each panel is the best fit of Equation 2; the proportion of variance accounted for (pVAF) by the fit is
given in the lower right of each panel. The right panels show the standardized residuals for each fit plotted against the

predicted response rates.

variance of these simulated response rates.
Again, this appears to be a good fit. But now,
in the presence of error in the response rates,
it is difficult to detect a pattern in the
residuals. This is because the random error
in the response rates masks the small system-
atic deviations from Equation 2. The plot of
the standardized residuals against the pre-
dicted response rate in the lower right panel of
the figure also fails to show a clear pattern.
Additional details about these simulations can
be found in the Appendix.

It is now evident why Equation 2 describes
single schedule data well, even though it may
not be the correct account. Bias will not affect

the quality of the fit of Equation 2; it will only
affect the size of 7,. A value of the exponent, q,
that is close to but different from unity will
introduce a small but systematic deviation
from the fit of Equation 2. But because this
deviation is small, Equation 2 still will account
for a large proportion of the response rate
variance. In addition, the error in measuring
response rates may swamp the systematic devia-
tion, thus making it difficult or impossible to
detect in the residuals.

These simulations support the logical anal-
ysis of the classic and modern theories of
matching presented here. Despite the empir-
ical success of Equation 2, the classic theory,
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because its foundational equation is known to
have limited applicability, is not itself likely to
be widely applicable.

TESTING MATCHING THEORY USING
SINGLE SCHEDULES

Needless to say, logic alone is not sufficient
reason to discard a theory. Empirical tests of
the theory have focused on its fundamental
assumption, namely, that a constant amount of
behavior, k, is allocated among available re-
sponse alternatives (Herrnstein, 1974). Early
reviews (de Villiers, 1977; McDowell, 1980;
Warren-Boulton, Silberberg, Gray, & Ollom,
1985; Williams, 1988) reported mixed find-
ings, with some experimenters reporting the
required constant k, and others reporting
a k that varied with reinforcement para-
meters such as magnitude. In a recent review,
Dallery, McDowell, and Soto (2004) reached
the following conclusion:

Recent research suggests that k remains con-
stant over a limited range of reinforcer
magnitudes (Dallery, McDowell, & Lancaster,
2000; McDowell & Dallery, 1999), and these
results are consistent with two prior studies
(Heyman & Monaghan, 1987, 1994). However,
if the range of magnitudes is extended, then k&
varies markedly (Dallery et al., 2000; McDowell
& Dallery, 1999). (p. 46)

The literature reviewed by Dallery et al.
(2004) shows that k varies directly with re-
inforcer magnitude, and that the variation is
small at large magnitudes but becomes larger
at small magnitudes. This helps explain the
mixed outcomes in the literature and supports
the conclusion that the central assumption of
the classic theory is false.

The violation of the constant-k requirement
of the classic theory is predicted by at least one
other theory, namely, linear system theory
(McDowell, 1980; McDowell, Bass, & Kessel,
1993; McDowell & Kessel, 1979). Interestingly,
it also is predicted by the modern theory of
matching. This can be shown by conducting
a simulated experiment analogous to experi-
ments that have been conducted to test the
constant-k requirement of the classic theory.
For this simulated experiment, the modern
theory of matching will be assumed to be
correct. According to the modern theory,
varying reinforcer magnitude corresponds to
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Fig. 3. Values of k estimated by fitting Equation 2 to
data generated by Equation 6 with parameters set equal to
the values given in the figure. Changes in the bias
parameter along the x-axis correspond to changes in the
magnitude of the instrumental reinforcer.

varying the bias parameter in Equation 6.
Larger reinforcer magnitudes generate a larger
bias in favor of the instrumental reinforcer;
smaller magnitudes generate a smaller bias,
and very small magnitudes may even produce
bias that favors the background reinforce-
ment. In the simulated experiment, reinforcer
magnitude was varied by varying the bias para-
meter in Equation 6. Fifteen sets of simulated
data were calculated from Equation 6 with k =
100, a = 0.8, r, = 5, 25, or 100, and with a bias
parameter of 0.1, 0.4, 1, 1.2, or 1.5. For each
set of simulated data, 16 reinforcement rates
that ranged from 5 to 400 were used to
calculate response rates; error was not added
to these rates. The classic single-alternative
Equation 2 was fitted to each set of data, which
yielded 15 estimates of k. These estimates are
plotted in Figure 3 as a function of the bias
parameter used to generate the data from
which the estimate was obtained.

For the top curve in Figure 3, r, in Equation
6 was set equal to 5. This might correspond to
a typical experiment in an operant chamber,
where the background reinforcement is rela-
tively infrequent. At this value of 7, the k
estimated from Equation 2 remained nearly
constant across a large range of bias para-
meters, and hence simulated reinforcer mag-
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nitudes, but declined at the very low end of
the range. The other two curves in the
figure show the same pattern, except that the
decline in k& was more marked the larger
the value of 7, Evidently, the direct variation
of the classically estimated k with bias that is
shown in Figure 3 is consistent with the
experimental findings reviewed by Dallery
et al. (2004). These findings, it is now clear,
are consistent with the modern theory of
matching.

If modern matching theory predicts a classic
k that varies with reinforcer magnitude, then
this theory, which itself entails a constant k,
should accurately describe a set of data that
shows this variation. Consider an experiment
by McDowell and Dallery (1999) in which 5
rats were deprived of water for varying
amounts of time and then worked on variable
interval (VI) schedules of water reinforcement.
The duration of water deprivation was consid-
ered to affect the reinforcing value of a
0.025-ml water reinforcer, and hence different
durations of water deprivation were consid-
ered analogous to different reinforcer magni-
tudes. McDowell and Dallery found that the &
estimated from the classic Equation 2 de-
creased with decreasing water deprivation for
all 5 rats, thus violating the constant-k re-
quirement of the classic theory.

One way to evaluate the modern theory’s
description of these data is to fit Equation 6,

a
R=—"",
ré+ £
b

simultaneously to the data from all deprivation
conditions for each rat using a single, shared, k
and a single, shared, a. The single k parameter
is required by the modern theory, inasmuch as
k is required to remain constant across
changes in reinforcer properties. Using a single
a parameter for all deprivation conditions is
not specifically required by the theory but
arguably constitutes the most conservative
application of the theory to data. The third
parameter entailed by Equation 6 is re/b,
which, as mentioned earlier, must be estimat-
ed as a unit. This parameter must be allowed
to vary across deprivation conditions because
different levels of deprivation are likely to
produce different degrees of bias, b, for the
water reinforcer. For a given set of parameter
values (i.e., a single k, a single 4, and as many
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values of 7;/b as there are deprivation condi-
tions), Equation 6 will produce a residual sum
of squares (RSS) for each deprivation condi-
tion. There also will be a constant total sum of
squares (SS) for each deprivation condition.
The ratio of these two quantities, RSS/SS,
summed over the deprivation conditions, can
be minimized by adjusting the set of para-
meters to obtain simultaneous, or ensemble,
fits of Equation 6 to each rat’s data. In other
words, given four deprivation conditions,
a single %, a single a and four »//bs can be
found such that

RSS,  RSS,
+

LRSS,
SS, ' SS,

n RSS,
SS,

Ss,

where the numerical subscripts refer to each
deprivation  condition, is a minimum.
Additional details about this fitting method
are given in the Appendix. If (a) the ensemble
fits of the theory are good, that is, if they
account for a large proportion of the data
variance, and if (b) the residuals left by the fits
are random, and if (c) the parameter estimates
obtained from the fits are reasonable and
consistent with the theory, then the modern
theory of matching may be said to provide
a good description of the data.

This simultaneous, or ensemble, fitting
method was applied to McDowell and
Dallery’s (1999) Phase 2 data (including the
~24-hr deprivation condition). The results
of the fits are listed in Table 1. All para-
meter estimates and percentages of variance
accounted for (%VAF) are based on the
rounded response and reinforcement rates
reported in McDowell and Dallery’s Appendix
B. Quantities listed in Table 1 that also are
reported in their article may differ because the
latter were based on unrounded data.

Consider first the individual fits of the
classic Equation 2, which also are listed in
Table 1. Equation 2 accounted for a large
percentage of variance in virtually every con-
dition, but the estimates of k declined from the
longest to the shortest deprivation condition
for all rats, which violates the classic theory of
matching. Also listed in the table are overall
%VAFs for each rat’s Equation 2 fits. These
were obtained using

RSS, 4+ RSS,+ - - - 4+ RSS,
SS,+8S,+ - - +SS,
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Table 1
Estimated k and percentage of variance accounted for (%VAF) by individual fits of the classic
Equation 2, and estimated k, a, and 1/ b, and %VAF for ensemble fits of the modern Equation 6
to data from McDowell and Dallery (1999).
Classic individual fits Modern ensemble fits
(Equation 2) (Equation 6)
"
Rat Hour deprivation k % VAF k a N % VAF
R1 23.5 80 96 81 0.94 77 96
18 62 97 461 96
12 87 100 443 100
6 52 100 679 99
4 30 95 1,025 95
Overall 97 97
R2 23.5 97 99 116 0.85 131 100
18 82 100 467 99
12 48 100 605 99
6 47 99 824 100
Opverall 99 100
R14 23.5 17 93 18 0.75 13 89
18 16 99 60 98
12 13 97 61 97
6 4 84 180 83
Opverall 96 95
R16 23.5 115 99 178 0.86 751 99
18 72 100 1,459 100
12 16 100 2,478 99
6 4 100 4,818 100
Opverall 99 99
R19 23.5 86 97 112 0.80 135 96
18 69 99 408 98
12 14 85 770 80
6 11 99 1,382 99
Overall 97 96

for the n deprivation conditions to calculate
the overall error variance associated with the
fits considered as a group. Additional details
about this method of calculating overall
%VAFs are given in the Appendix.

The results of ensemble fits of the modern
Equation 6 are given on the right side of
Table 1. A single shared % and a single shared
a are listed for each rat, along with estimates of
ry'/ b for each deprivation condition. As shown
in the table, the %VAFs for the fits of Equation
6 were excellent, and not appreciably different
from the %VAFs for the fits of the classic
Equation 2. Notice that even though Equation
2 entails fewer parameters than Equation 6,
the fits of Equation 2 required more free para-
meters per rat than did the fits of Equation 6.
For example, with four deprivation conditions,
the fits of Equation 2 required two parameters
per condition, or eight free parameters per rat,
whereas the ensemble fits of Equation 6
entailed one k, one a and four ry/bs, or six

free parameters per rat. The standardized
residuals for the ensemble fits of Equation 6,
pooled across deprivation conditions and rats,
are plotted against the predicted response
rates in Figure 4. As is evident from the figure,
there were no clear trends in the residuals.
The estimates of @ in Table 1 ranged from
0.75 to 0.94, which is consistent with values
typically reported for concurrent schedules.
According to the modern theory, the quantity
s/ b should increase as deprivation level de-
creases. This is because lesser degrees of depri-
vation are likely to generate lesser degrees of
bias (b) favoring the water reinforcer. As
b decreases with decreasing deprivation,
r?/b must increase. As shown in Table 1, the
estimates of 7'/ b for all rats showed this trend.
Clearly, all three criteria listed earlier were
met by the fits of Equation 6 to these data. They
accounted for a large proportion of the data
variance and left random residuals, and the
parameter estimates were reasonable and con-
sistent with the theory. Although these data
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Fig. 4. Standardized residuals left by ensemble fits of
Equation 6 to data from McDowell and Dallery (1999),
pooled across deprivation conditions and rats, and plotted
as a function of predicted response rates.

violate the constant-k requirement of classic
matching theory, they are consistent with the
constant-k requirement of the modern theory.

To summarize, it is illogical to expect that
the classic theory of matching is correct, given
known empirical results on concurrent sched-
ules. Furthermore, outcomes of direct empir-
ical tests of the theory indicate that its central
assumption is false. In contrast, the modern
theory of matching is logically consistent with
known empirical results on concurrent sched-
ules. In addition, it predicts the violation of
the classic theory’s central assumption, and it
accounts for at least one set of data that
exhibits this violation while maintaining in-
violate its own constant-k requirement.

TESTING MATCHING THEORY USING
CONCURRENT SCHEDULES

It is not widely recognized that every
concurrent schedule constitutes a test of
matching theory. An adequate test of the
theory must engage the constant-k assumption
that fuels the theory’s derivation. The most
obvious way to do this is by applying Equations
2 and 6 to behavior on single-alternative
schedules. But every concurrent schedule also
entails single-alternative equations that engage
the constant-k assumption; these are Equations
3 and 4 in the classic theory and Equations 7
and 8 in the modern theory. The classic theory
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can be tested on a concurrent schedule by
simultaneously fitting Equations 1, 3, and 4 to
the data; the modern theory can be tested by
simultaneously fitting Equations 5, 7, 8, and 9
to the data. These fits must be evaluated with
reference to the three criteria listed earlier,
namely, quality of fit, randomness of residuals,
and reasonableness and theoretical consisten-
cy of parameter estimates.

This ensemble method of testing matching
theory will be illustrated with data from Dallery
et al’s (2004) study of rats working on
concurrent VI VI and single VI schedules for
sucrose pellets of differing concentrations.
Data will be examined from 4 rats working
on concurrent VI VI schedules where a 75%
sucrose pellet was used as the reinforcer in one
component and a 50% sucrose pellet was used
as the reinforcer in the other component. To
evaluate the classic theory, Equations 1, 3, and
4 were fitted simultaneously to each rat’s data
with a single %k and a single 7, shared across the
two components of the concurrent schedule.
Although Equation 1 does not participate in
the parameter estimation, it is included in the
analysis so that its residuals can be examined.
For each rat, a single k and a single 7, were
found such that RSS,/SS, + RSS,/SS, was
a minimum, where the first ratio in the sum
refers to the first component of the concur-
rent schedule and to Equation 3, and the
second ratio refers to the second component
and to Equation 4. Percentages of variance
accounted for (%VAF) by the ensemble fits are
listed in the left columns of Table 2. The
%VAFs for Equation 1 were obtained by
calculating the residuals from the straight line
described by the log transform of the ratio
form of this equation.

As shown in the table, the equations of
classic matching theory in some cases de-
scribed the rats’ behavior poorly and in other
cases described it moderately well, although
no %VAF exceeded 96%. By and large the
worst fits were for Equation 1. The overall
median %VAF for the three equations and 4
rats was 87.5%. If Rat 125’s results are
considered aberrant, then these fits could be
judged to be at least satisfactory. But the
residuals left by the fits were not random.
The standardized residuals are plotted against
the relevant predicted dependent variable in
the left panels of Figure 5, pooled across rats.
The straight lines are least squares fits to the
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Table 2

Percentage of variance accounted for by ensemble fits of classic theory Equations 1, 3, and 4 and
modern theory Equations 9", 7, and 8" to concurrent schedule data from Dallery, McDowell, &
Soto (2004).

Classic equation number

Modern equation number

Rat 1 3 4 9" 7" 8"
125 17 58 55 98 73 81
126 63 90 84 97 99 92
127 93 96 94 99 96 98
128 85 95 90 97 96 94
Median 74 93 87 98 96 93
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Standardized residuals left by ensemble fits of classic equations (left panels) and modern equations (right

panels) to concurrent schedule data from Dallery, McDowell, & Soto (2004). Data are pooled across rats in all panels and
also are pooled across concurrent schedule components in the top panels. The straight lines in all panels are least squares

fits. Correlation coefficients are given in the upper right of each panel.
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plotted data. In the top left panel, the stand-
ardized residuals also are pooled across con-
current schedule components. The residuals
in this panel were left by Equations 3 and 4,
and show a decreasing trend across predicted
response rates. The correlation coefficient for
this plot was —0.35. Analogous correlation
coefficients for individual rats in numerical
order were —0.67, —0.78, —0.37, and —0.34,
indicating that the declining trend was consis-
tent across rats. The residuals in the bottom
left panel of Figure 5 were left by the log
transform of the ratio form of Equation 1; they
also show a declining linear trend and a large
negative correlation. Analogous correlation
coefficients for individual rats in numerical
order were —0.99, —0.96, —0.96, and —0.88,
indicating that this trend also was consistent
across rats.

Although the %VAFs for the classic equa-
tions in Table 1 could be considered satisfac-
tory, the residuals left by the fits were not
random. It must be concluded, therefore, that
these concurrent schedule data are not con-
sistent with the classic theory of matching.
Turning now to the modern theory, it is
necessary to fit Equations 5, 7, 8, and 9 as an
ensemble to each rat’s data. The first step in
fitting these equations is to recognize that not
all the parameters in the equation can be
estimated independently. Just as 1;/b in
Equation 6 is a composite parameter that must
be estimated as a unit, so too

in Equations 7, 8, and 9 are composite
parameters that must be estimated as units.
Letting ¢, represent the first of these compos-
ite parameters,
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and ¢, represent the second,
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we can write Equations 7, 8, and 9 as
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which reduces the number of parameters in
Equations 5, 7, 8, and 9 by one.

Any fit of the modern theory to concurrent
schedule data must begin with Equations 5, 7',
8’, and 9’, which entail a total of seven free
parameters. A further simplification is possi-
ble, however, and probably desirable, and that
is to set all three exponents to a single value.
Unlike the bias parameters, it is not clear what
variables, if any, affect the exponents in these
equations. Therefore, a conservative approach
is to set them equal to a single value, a, rather
than allowing them to vary separately. A
further benefit of this approach is that when
the three exponents are equal, the three bias
parameters and two composite parameters are
related as

by, Cop
by =

=5 = s
by, Ce

and Equations 5 and 9 become identical.
Hence, when all the exponents are equal, the
four concurrent-schedule equations of mod-
ern matching theory entailing seven estimable
parameters reduce to three equations entail-
ing four estimable parameters. The three
equations are

1 a » N\ @ —1
r=tfa (D) 2 (2) ] L
n Coe \ N

for responding in the first component of the
concurrent schedule,

a a —1
1 a0
RZ =k |:C2e () + 672 <TI> + 1:| , (SH)
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for responding in the second component of
the concurrent schedule, and

R, Coe <Vl)a
R, Cie \ 12 ’
for the ratio of responding in the two

components of the concurrent schedule. For
all three equations, the exponents in ¢, and ¢,,

(9")
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equal a. Equation 9” could just as well be
labeled Equation 5", because the two equa-
tions are identical.

Equations 7", 8", and 9" were fitted to the
data discussed earlier from Dallery et al
(2004). The equations were fitted to each rat’s
data as an ensemble with single shared , «, ¢,
and ¢,, parameters. In other words, a single
shared k, a, ¢,, and ¢, were found such that
RSS,/SS, + RSS./SS, + RSS,/SS; was a mini-
mum, where the first term in this sum refers to
the first component of the concurrent sched-
ule and to Equation 7", the second term refers
to the second component of the schedule and
to Equation 8", and the third term refers to the
log ratios of responses and reinforcers and to
Equation 9". The %VAFs for these fits are
listed in the right columns of Table 2. With
a few exceptions, the fits were excellent,
accounting for as much as 99% of the data
variance. The fits of Equation 9" were far
superior to those of Equation 1, as might be
expected, and the fits of Equations 7" and 8"
exceeded those of Equations 3 and 4 in all but
one case, in which they were equal. The
standardized residuals left by the fits of
Equations 7" and 8", pooled across rats and
concurrent schedule components, are plotted
against predicted response rates in the top
right panel of Figure 5. The straight line in the
panel is a least squares fit to the plotted data.
Clearly there was no trend in these residuals.
Correlation coefficients for individual rats’
standardized residuals, in numeric order, and
pooled across concurrent-schedule compo-
nents, were —0.06, —0.04, —0.04, and 0.06,
confirming the absence of trend for individual
rats. The standardized residuals left by the fits
of Equation 9", pooled across rats, are plotted
against predicted log response ratios in the
bottom right panel of Figure 5. The straight
line is a least squares fit to the plotted data.
Again the residuals appear to be random.
Correlation coefficients for individual rats’
standardized residuals, in numerical order,
were 0.08, —0.07, —0.01, and —0.07, confirm-
ing the absence of trend for individual rats.

Having shown good %VAFs and random
residuals for the fits of Equations 7", 8", and 9",
we turn now to the parameter estimates. The
estimates of the concurrent schedule bias
parameter, ¢,/ ¢,, were 1.05, 1.08, 1.05, and
0.88 for the 4 rats in numerical order, in-
dicating a slight preference for the 75%
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sucrose pellet over the 50% pellet for all rats
except 128. Estimates of the exponent, a, for
the 4 rats in numerical order were 0.52, 0.64,
0.80, and 0.76, indicating undermatching for
all rats. These parameter estimates appeared
to be reasonable and consistent with the
modern theory of matching. In summary, the
results of fitting Equations 77, 8", and 9"
indicate that these concurrent schedule data
are consistent with the modern theory.

It may seem that the modern theory has an
unfair advantage in this comparison inasmuch
as it entails four free parameters per rat
whereas the classic theory entails only two.
But the theories are not being compared with
each other; they are each being compared with
the data. Because the classic theory’s residuals
were not random, it cannot be the correct
description of these data, no matter how many
parameters are at issue. The trade off between
number of parameters and residual variance
becomes important when two or more theories
reasonably meet all three evaluative criteria,
namely, good %VAFs, random residuals, and
reasonable and consistent parameter esti-
mates. In such a case, it is appropriate to
compare theories on the basis of the trade off
between the number of parameters and the
residual variance using traditional analysis of
variance, or a modern alternative, such as
Akaike’s information criterion (Motulsky &
Christopoulos, 2004).

DISCUSSION

Both logic and data indicate that classic
matching theory, which includes the widely
applied quantitative law of effect (Equation 2),
is false. At best, the classic theory can be
considered a special case of the modern
theory, with limited applicability. Because
empirical tests of the classic theory have
focused on single schedules and Equation 2,
it may be worthwhile to test the theory further
on concurrent schedules by fitting Equations
1, 3, and 4, using the ensemble fitting method
introduced here (actually first employed in
a different context by McDowell, 2004).
Although it does not seem likely that the
outcome of such tests will favor the classic
theory, the additional testing would render the
theory’s empirical evaluation more thorough,
and would likely add support to the conclusion
reached here.
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One might attempt to cling to the classic
theory by invoking the commensurability
argument mentioned earlier. This argument
is typically invoked for single schedules, that is,
in applications of Equation 2, and is based on
outcomes such as obtaining different estimates
of r, when different reinforcer magnitudes are
used for the instrumental response. For
example, if the estimated value of r, decreases
when the instrumental reinforcer magnitude
increases, then this is said to be the result of
the constant background reinforcement
being measured in terms of the now larger
units of the new instrumental reinforcer.
According to this view, the units on reinforce-
ment rates are reinforcer amounts per unit
time, not simple reinforcer counts per unit
time. But this view is inconsistent with other
common usage in matching theory. For
example, if different reinforcer magnitudes
are used in the two components of a concur-
rent schedule, researchers do not fret that
the units on the reinforcement rates are
incommensurate and therefore must be equat-
ed before constructing the reinforcement
rate ratio. No, the bias parameter accommo-
dates the difference; the units on the re-
inforcement rates remain simple counts per
unit time.

The commensurability argument is actually
a step along the road from the classic to the
modern theory of matching. It represents the
halfway point. The classic commensurability
theorist essentially is asserting that a conversion
factor, ¢, is needed in Equation 2 to convert
the units of 7, into units of r:

kr

r—+cr,

The conversion factor specifies how many r
events equal one 7, event. If the magnitude of
the r event is increased, then fewer r events
equal one (presumably unchanged) 7, event,
and so the quantity, cr,, which is estimated as
a unit, decreases. But the commensurability
theorist’s equation is simply the modern
Equation 6 without the exponent:

kr

Te
r4+—.

b

R=

It is halfway to the modern theory. Assuming
response symmetry, b in this equation can be
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conceived of as specifying how may 7, events
equal one r event, which is simply the re-
ciprocal of ¢in the previous equation.

If the commensurability argument applies
to Equation 2, then a fortiori it applies to
Equations 3 and 4. These equations have three
reinforcement rates in their denominators,
one for each component of the concurrent
schedule, plus r,. When different reinforcer
magnitudes are used in the two components of
the schedule, all three reinforcement rates are
incommensurate. The solution, according to
the classic commensurability theorist, must be
to incorporate two conversion factors. One, ¢,
specifies how many 7 events equal one
event, and the other, ¢,, specifies how many 7
events equal one 7, event. Incorporating these
conversion factors into Equation 3 produces

kn,
R=————.
7+ ol t G,

But the commensurability theorist’s equation
is simply the modern Equation 7 without the
exponent, which, with some manipulation, can
be written

kr,
R = L
2T
"by o by

It is halfway to the modern theory. Assuming
response symmetry, b,, specifies how many 7
events equal one 7 event, which is simply the
reciprocal of ¢,, and b, specifies how many 7,
events equal one 1 event, which is the
reciprocal of ¢,.

Conceiving of the bias parameters in the
modern theory as conversion factors helps us
understand the commensurability argument
and why it constitutes a step toward the
modern theory. However, as is well known,
the bias parameters also incorporate response
bias and so cannot be taken to represent
conversion factors for reinforcers or responses
separately. Consistent usage in both the classic
and modern theories requires that the units of
response and reinforcement rates be taken as
simple counts per unit time. What the classic
commensurability theorist identifies as a con-
version factor is really a unitless bias parameter
borrowed from the modern theory.

Although the classic theory of matching is
almost certainly false, the modern theory
remains tenable. Of course, it is far from
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being thoroughly verified. In fact, except for
the foundational Equation 5, the modern
theory has received almost no attention.
Weighing in the theory’s favor is its logical
consistency with known properties of behavior
on concurrent schedules, namely, bias and
under- or overcontrol of response allocation
by reinforcement frequencies. Also noteworthy
is the modern theory’s prediction that the
classic theory’s constant-k requirement is false.
The details of this prediction are particularly
significant because they accord well with
empirical findings. And finally, the ensemble
fitting method introduced here showed that
at least two sets of data, one from single
schedules and one from concurrent schedules,
were consistent with the modern theory, even
while they violated the classic theory of
matching.

Of course modern matching theory is not
the only alternative to the classic theory.
Another alternative is linear system theory
(McDowell et al., 1993; McDowell & Kessel,
1979). Interestingly, linear system theory also
predicts the violation of the classic theory’s
constant-k requirement, and predicts the same
details of the violation as does modern
matching theory (McDowell, 1980). As yet
another example, maximization or optimality
principles have given rise to an entire class of
alternatives to classic matching theory
(Rachlin, Battalio, Kagel, & Green, 1981).
Modern matching theory retains the appealing
story of choice, which is that all behavior is
choice governed by the matching equation,
except that now the matching equation is
Equation 5 rather than Equation 1. Linear
system theory is a descriptive account built by
assuming that the effects of individual reinfor-
cing events on behavior are independent and
additive, and that they diminish with time
(McDowell et al., 1993). Maximization or
optimality theories assert that steady-state
behavior, such as that described by Equation
2, is the result of an organism maximizing
a valuable quantity, such as overall reinforce-
ment rate.

It is important to recognize that even if
classic matching theory, including Equation 2,
is false, the form of the relation between
response and reinforcement rates on single
schedules may still be exactly hyperbolic.
According to modern matching theory, this
form is not exactly hyperbolic, but the de-
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viation is difficult to detect because it is small
and typically is swamped by error in the
response rates. Of course, this theory could
be wrong, in which case the reason that
deviations from the hyperbolic form are
difficult to detect is because they do not exist.
Put another way, the form of Equation 2 may
be correct, but for the wrong reasons; the
details of the equation’s derivation may be
inconsistent with fact. Needless to say, a theory
that requires an exact hyperbolic relation
between response and reinforcement rates is
consistent with a large body of data, at least
with respect to that requirement. Indeed,
given existing data, any tenable theory must
require either an exact hyperbolic relation
between response and reinforcement rates on
single schedules, or a relation that is not
detectably different from hyperbolic.

Thirty-five years of research on matching
theory have brought us closer to an accurate
mathematical understanding of behavior on
concurrent and single schedules of reinforce-
ment. It may now be necessary to abandon
the original theory of matching, but this
surely will lead to new theories, new experi-
mental findings, and new and better knowl-
edge about how behavior is governed by
environmental events.
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NOTES ON SIMULATED DATA

The simulated data points (response rates)
in the left panels of Figure 2 were calculated by
substituting reinforcement rates of 5, 10, 20,
40, 60, 80, 100, 120, 140, 160, 200, 240, 280,
320, 360, and 400 into Equation 6, along with
the parameter values given in the text
Homoscedastic gaussian error was added to
the calculated response rates in the lower left
panel by letting each calculated response rate
represent the mean of a Gaussian distribution
of response rates with a standard deviation of
four responses per minute. A response rate
drawn at random from each distribution was
taken as the obtained response rate. Equation
2 was then fitted to the two sets of simulated
data by minimizing the sum of the squared
residuals about Equation 2 using the Solver
add-in supplied with Microsoft Excel®. The
standardized residuals in the right panels of
Figure 2 are the residuals left by the best fits,
expressed as z-scores.
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The simulated experiment that yielded the
estimated classic ks plotted in Figure 3 entailed
calculating 15 sets of data. To obtain each data
set, 16 response rates were calculated by
substituting the 16 reinforcement rates listed
above into Equation 6, along with 1 of 15
combinations of the parameter values given in
the text and the figure. For all data sets, k
equaled 100 and a equaled 0.8. In one
condition of the experiment, 7, equaled 5
and b was varied across the five values listed in
the text; in a second condition, 7, equaled 25
and b was varied across the same five values;
and in a third condition, 7, equaled 100 and
b again was varied across the same values. No
error was added to the calculated response
rates. Equation 2 was then fitted to each set of
simulated data as described above. The per-
centage of variance accounted for (%VAF)
by all fits exceeded 99%. The values of k
estimated from the 15 data sets are plotted in
Figure 3 as a function of b, which was the
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independent variable in each condition of the
simulated experiment.

NOTES ON THE ENSEMBLE FITTING METHOD

In ordinary least-squares regression, param-
eter values are found such that the residual
sum of squares, RSS, is a minimum. When the
regression involves multiple sources of vari-
ance, it may seem that the sum of the RSSs
from the different sources of variance,

S s,
i=1

where i enumerates the n sources of variance,
should be minimized. But this does not always
work out well in practice. Differences in the
magnitudes of the RSSs can result in a small
sum being obtained by reducing some of the
RSSs to relatively small values while leaving
others relatively large. This may produce good
fits to some sources of variance, but mediocre
or poor fits to others. One solution to this
problem is to normalize each RSS by dividing
it by the corresponding total sum of squares,
SS, for that source of variance. The sum of

these ratios,
SS; °

4 A
i=1 4

(A1)

(A2)

may then be minimized. This is the approach
used in the ensemble fitting reported in this
article.

When fitting to multiple sources of variance,
the %VAF can be calculated separately for
each source. An overall %VAF also can be
calculated, for which all the sources of
variance are considered as a group. This can
be accomplished by taking the RSS for the
group to be the sum of the individual RSSs,
and the SS for the group to be the sum of the
individual SSs. The expression,
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S RSS;

i=1

TR (A3)
5SS
i=1

then is related to the error variance for the
group, and can be used to calculate the
overall %VAF in the same way that RSS/SS is
used to calculate the %VAF given a single
source of variance. This method was used to
calculate the overall %VAFs reported in this
article.

In many cases, the parameter values and
%VAFs obtained by minimizing Expression A2
are virtually identical to those obtained by
minimizing Expression Al. This was the case
for the modern ensemble fits summarized in
Table 2, and for Rat R2’s modern ensemble fit
reported in Table 1. For other data sets, the
parameter values and %VAFs may differ, but
typically only by small amounts. When there
are differences, the overall %VAF (calculated
from Expression A3) is often the same, or
nearly the same, for both fits. Yet as indicated
above, when Expression A2 is minimized, the
total RSS is distributed more evenly across the
different sources of variance than when
Expression Al is minimized. This results in
individual %VAFs that are more homogenous
(i.e., having a smaller standard deviation), and
it usually produces a higher mean %VAF, than
when Expression Al is minimized. Individual
%VAFs for the fits to data from Rats R1, R14,
R16, and R19 reported in Table 1 have higher
means and smaller standard deviations than
the %VAFs for fits that minimized Expression
Al.

Although ensemble fits that minimize
Expression A2 are arguably superior to those
that minimize Expression Al, differences for
the fits reported in this article do not result in
different conclusions.



