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The present study tested a formal, or purely mathematical, theory of matching, and a modern account
derived by McDowell (1986) that incorporates deviations from strict matching—bias and sensitivity. Six
humans pressed a lever for monetary reinforcers on five concurrent variable interval (VI) schedules of
reinforcement. All schedules were presented during each session. The magnitude on one alternative
remained constant, and five magnitudes were presented across sessions on the other alternative. To test
the formal account, two absolute response rate equations were fitted to the response and reinforcement
rates at each alternative at each magnitude. Although the equations accounted for a high percentage of
variance, there was a significant negative correlation between the standardized residuals and the
predicted response rates. To test the modern account, an ensemble of four equations was fitted to the
data. The equations predicted relative and absolute responding, and the independent variables in each
equation were adjusted for bias and sensitivity. The equations accounted for a high percentage of
variance, and the standardized residuals were not correlated with the predicted response rates. The
values of the parameters were consistent with empirical findings and theoretical predictions, including
the prediction that k should remain constant across changes in reinforcer magnitude. The results
suggest that the formal theory of matching does not describe the data, and that the modern theory may
provide an accurate and coherent description of concurrent and single-alternative responding.
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_______________________________________________________________________________

Beyond the collection of uniform relationships
lies the need for a formal representation of the
data reduced to a minimal number of terms. A
theoretical construction may yield greater
generality than any assemblage of facts. . . . It
will not stand in the way of our search for
functional relations because it will arise only
after relevant variables have been found and
studied. Though it may be difficult to un-
derstand, it will not be easily misunderstood . . .
(Skinner, 1950/1972, p. 100)

Skinner’s assessment of theory was tem-
pered by an emphatic recommendation that
we must first establish an experimental analysis
of how relevant variables affect behavior
(Skinner, 1950/1972). In the case of a quanti-
tative theory, for instance, the progression
from experimental analysis to theory should
increase the likelihood that the theory’s
parameters reflect the operation of definite
variables and processes, rather than simply
being ‘‘arbitrary constants.’’ Of course, a pro-

gression from theory to further experimental
analysis may also reveal novel functional
relations and behavioral processes. Regardless
of the sequence, quantitative theory may
increase the generality and precision of our
understanding of environment–behavior rela-
tions. Just as the universal law of gravitation
yields considerable predictive and practical
advantages over the statement that objects fall
when dropped, a quantitative theory of behav-
ior can move us beyond the statement that
operant responding increases when reinforced
(or any similar ‘‘assemblage of facts’’). In
short, a quantitative theory should improve
our ability to predict and influence behavior,
which is a hallmark of behavior-analytic sci-
ence.

In the 55 years since Skinner made his
remarks about theory, operant psychologists
have generated a wealth of orderly data from
single and concurrent VI schedules of re-
inforcement, and several quantitative theories
have emerged to provide a coherent account
of performance on both types of schedules.
Although matching theory has been the most
investigated quantitative account of VI perfor-
mance, a number of studies now suggest that
Herrnstein’s (1961, 1970; de Villiers &
Herrnstein, 1976) original, or classic, theory
of matching requires some revision (Dallery,
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McDowell, & Lancaster, 2000; Dallery,
McDowell, & Soto, 2004; McDowell, 2005;
McDowell & Dallery, 1999; McDowell &
Wood, 1984, 1985; Soto, McDowell, &
Dallery, 2005; Warren-Boulton, Silberberg,
Gray, & Ollom, 1985; cf. Heyman &
Monaghan, 1987, 1994; see Dallery & Soto,
2004, for a review). As we will discuss in more
detail below, the purpose of the present study
is to test two alternatives to Herrnstein’s
theory. First, we will review why such revisions
are necessary.

The classic theory begins with the proposi-
tion that the proportion of responding at each
of two choice alternatives matches the pro-
portion of reinforcement obtained from those
alternatives (Herrnstein, 1961), or:

R1

R1zR2
~

r1

r1zr2
, ð1aÞ

where R1 and r1 represent the rates of
responding and reinforcement on Alternative
1, and R2 and r2 represent the rates of
responding and reinforcement on Alternative
2, respectively. Herrnstein argued that even in
situations in which one response alternative
was arranged by the experimenter, extraneous
alternatives exist (e.g., rearing, scratching,
smelling, etc). In such a situation, Equation 1
can be rewritten as:

R1

R1zRe
~

r1

r1zre
, ð1bÞ

where Re and re refer to the aggregate amount
of responding and aggregate amount of re-
inforcement delivered on extraneous alterna-
tives.

Then, by assuming that R1 and Re are
exhaustive of the total amount of behavior
possible in the environment and that this
amount is constant across variations in re-
inforcer properties (e.g., reinforcer magni-
tude), Herrnstein let k 5 R1 + Re and then
solved for R1, which produced:

R~
kr

rzre
: ð2Þ

The subscript on R has been dropped because
Equation 2 is fitted to only one response
alternative. Thus, based on Equation 1, and
with the assumption that the total amount
of behavior, k, remains constant in a given
environment, Herrnstein derived a hyperbolic

equation and a theory to describe how re-
inforcement affects response strength (de
Villiers & Herrnstein, 1976; Herrnstein, 1970,
1974).

Classic matching theory (Equation 2 and the
assumptions that gave rise to it), however, is
logically and empirically inconsistent with
experimental findings. First, choice almost
always deviates from strict, proportional
matching (e.g., Baum, 1974, 1979; McDowell,
2005; Williams, 1988), which violates the
mathematical propositions, Equations 1 and
1b that underlie Equation 2. Second, k
varies with reinforcer magnitude (Bradshaw,
Szabadi, & Bevan, 1978; Dallery, McDowell, &
Lancaster, 2000; de Villiers, 1977; McDowell &
Dallery, 1999; McDowell & Wood, 1984, 1985;
Snyderman, 1983; cf. Heyman & Monaghan,
1987, 1994; see Dallery & Soto, 2004, for
a review), which violates the assumption that
the total amount of behavior is constant.

At least two alternatives to Herrnstein’s
classic theory are possible. First, McDowell
(1986) has proposed a formal, purely mathe-
matical theory of matching, but the formal
theory has not been subjected to empirical
test. Second, parameters can be incorporated
into the concurrent and hyperbolic equa-
tions (Baum, 1974, 1979; McDowell, 1986) to
account for deviations from strict matching.
The addition of these parameters is not
arbitrary; rather, they reflect the operation of
particular variables on choice. As such, they
may broaden the generality and precision of
the matching account. To distinguish the
equations with the additional parameters from
the original, classic theory, and from the
formal theory, we will refer to them collectively
as the modern theory of matching. The
purpose of the present experiment was to test
the application of the formal and modern
versions of matching to humans responding
under concurrent schedules of monetary re-
inforcement.

Formal matching theory simply describes
relations between rates of reinforcement and
responding on concurrent- and single-alterna-
tive schedules. In contrast, Herrnstein’s classic
theory asserted that measures such as response
rate, latency, duration, and force can repre-
sent response strength. The theory also
asserted that response strength is a function
of relative reinforcement, which can be ma-
nipulated by varying the rate, delay, magni-
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tude, or some other dimension of reinforce-
ment (de Villiers & Herrnstein, 1976). Despite
these differences in the scope of the two
theories, the formal theory begins in the same
way as the classic theory: with proportional
matching equations to describe choice in
a concurrent schedule. The matching equa-
tions for the two arranged alternatives in
a concurrent-schedule are:

R1

R1zR2zRe
~

r1

r1zr2zre
, ð3aÞ

and

R2

R1zR2zRe
~

r2

r1zr2zre
, ð3bÞ

where R1 and R2 refer to the response rate at
each of two experimentally programmed
alternatives, r1 and r2 refer to the reinforce-
ment rate at each alternative, and re and Re

represent the rate of extraneous reinforce-
ment and responding, respectively. The or-
ganism can allocate behavior to one of two
experimentally arranged alternatives or en-
gage in extraneous responding (the equation
for extraneous responding is not shown). The
equations state that the proportion of re-
sponding at each alternative matches the
proportion of reinforcement obtained at that
alternative.

From these concurrent equations, the abso-
lute response rate forms are obtained. These
equations are obtained in a similar manner as
the more familiar hyperbolic equation where
only one schedule is explicitly arranged
(Herrnstein, 1970). For the first alternative,
let k 5 R1 + R2 + Re and then solve for R1:

R1~
kr1

r1zr2zre
: ð4aÞ

For the second alternative, again let k 5 R1 +
R2 + Re and then solve for R2:

R2~
kr2

r1zr2zre
: ð4bÞ

It is important to note that the ks must be
equal across both equations because both ks
represent the same sum of response rates, R1 +
R2 + Re.

The key test for formal theory, therefore, is
whether Equations 4a and 4b accurately de-
scribe responding by using a single k. That is,

within the same concurrent schedule, the
value of k in both equations must be the same
when each is applied to the respective alter-
native (i.e., 4a to Alternative 1 and 4b to
Alternative 2). To illustrate this point, and for
convenience, the general procedure of the
current experiment will be outlined. First, we
arranged a concurrent schedule with a differ-
ent reinforcer magnitude at each alternative,
and then varied reinforcement rates at each
alternative. Then, we fitted Equations 4a and
4b to data from each alternative, where one
value of k was shared by both equations.
Having done so, the question was: Does each
equation describe responding at each alterna-
tive (i.e., high percentage of variance ac-
counted for and random residuals)? If the
same k can be used in both equations, then
formal theory would be supported.

To illustrate the difference between formal
theory’s equal-k requirement and classic theo-
ry’s constant-k requirement, consider a situa-
tion in which a second concurrent schedule
with different reinforcer magnitudes is ar-
ranged. For classic theory, k is constant at
both alternatives across both magnitude pairs.
Formal theory requires, within a magnitude
pair, a single k because the k in each equation
represents the same sum. However, the ks
across the first and second magnitude pairs
can vary because the sums of response rates
(ks) in the first and second magnitude pairs
do not represent the same sums. There is no
theoretical constant-k requirement as in the
classic theory. Thus formal theory’s equal-k
requirement is different than the classic
theory’s constant-k requirement.

The logic of the development of the formal
theory is equivalent to the logic of the
development of the classic theory. Because
both theories begin with proportional match-
ing equations, the formal theory is subject to
the same criticism that McDowell (2005)
leveled against the classic theory. That is,
because departures from proportional match-
ing are the rule rather than the exception, and
because the absolute response rate equations
are derived from the proportional matching
equations, both the classic and formal theories
of single variable-interval (VI) responding are
inconsistent with empirical findings. The vari-
ables affecting behavior in a concurrent envi-
ronment that cause deviations from strict
matching also should affect behavior in a single
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VI environment. Similarly, these variables
should cause deviations from strict matching
when the absolute rate equations are applied
to one response alternative in a concurrent
arrangement. If all behavior is choice
(Herrnstein, 1970), then the same variables
should prevail regardless of the number of
explicitly arranged alternatives. Despite this
criticism, the test of the equal-k requirement
still represents a valid test of a key feature of
the formal theory.

The modern theory is a set of equations that
incorporate deviations from strict matching
into the concurrent and absolute response
rate equations. The starting point for the
modern version of matching is Baum’s (1974,
1979) generalized matching equation, or

R1

R2
~b

r1

r2

� �a

, ð5Þ

where b represents bias and a represents the
degree of sensitivity to changes in reinforce-
ment rates. The bias parameter can account
for asymmetries between the alternatives due
to differences in response cost or reinforcer
magnitude. We can obtain the absolute re-
sponse rate forms for each component of
a concurrent schedule from Equation 5 in the
same manner outlined above for the classic
theory (McDowell, 1986, 2005). The equations
for each alternative are

R1~k
1

b1e

re

r1

� �a1e

z
1

b12

r2

r1

� �a12

z1

� �{1

ð6aÞ

and

R2~k
1

b2e

re

r2

� �a2e

zb12
r1

r2

� �a12

z1

� �{1

: ð6bÞ

There are three pairs of reinforcement rate
ratios, with one bias parameter and one
exponent applied to each of the three pairs.
McDowell (1986) also showed that the modern
theory entails another equation:

R1

R2
~

1

b2e

re

r2

� �a2e

b1e
r1

re

� �a1e

: ð7Þ

Equation 7 includes the bias and sensitivity
parameters that apply to the ratios of each
arranged alternative and the extraneous
alternative. This equation is a consequence
of matching theory’s requirement that all

behavior be allocated among the available
response alternatives (McDowell, 1986).

One difference between the formal and
modern theories is that they make different
assumptions concerning k. Specifically, mod-
ern theory retains Herrnstein’s assumption
that total behavior should remain constant in
a given environment. Thus we start with the
foundational equation (Equation 5), make the
assumption that k remains constant, and then
we simply derive the remaining equations
algebraically (see McDowell, 1986, for more
details on the derivations).

The present study evaluated the formal and
modern versions of matching theory by varying
reinforcer magnitude at one of two concur-
rently available response alternatives. The
magnitude on the other alternative remained
constant. We assessed five unique magnitude
pairs. The same response manipulandum and
range of VI schedules were used for each
alternative (Findley, 1958). The key question
for formal theory was whether one k per
magnitude pair could describe the data (the
equal-k requirement). For modern theory, an
important question was whether one k overall
(i.e., the constant-k requirement, or a single k
for all fits of Equations 6a and 6b across
all magnitude pairs) could describe the data.
The fits were evaluated with respect to the
quality of the fit (i.e., percentage of variance
accounted for), randomness of the residuals,
and reasonableness and theoretical consisten-
cy of the parameter estimates.

METHOD

Participants

Five females, ranging in age from 23 to 55,
and one 20-year-old male agreed to partici-
pate. Applicants were recruited through adver-
tisements in a local newspaper. All participants
were experimentally naive, and none was
a college student.

Apparatus

Experimental sessions were conducted in
two windowless experimental rooms measur-
ing 2.3 m by 1.2 m. Participants responded on
a MED Associates Human Apparatus (ENV
600A). The apparatus measured 57.1 cm wide
by 203.8 cm tall. A metal lever was centered
horizontally and protruded from the front of

132 JESSE DALLERY et al.



the apparatus 106.7 cm above the floor. The
lever required a minimum force of approxi-
mately 111.2 N to register a response.

A small pushbutton was located 137.8 cm
above the floor and 17.8 cm to the right of
center, and a blue stimulus light was mounted
5.7 cm above the pushbutton. A row of 10
white lights was centered 150.5 cm above the
floor and signaled different reinforcement
schedules. A row of 10 red lights was centered
155.6 cm above the floor and signaled differ-
ent reinforcer magnitude conditions. A green
light 166.4 cm above the floor and 17.8 cm to
the right of center served as a session light.
Reinforcers were signaled by a brief tone and
a flash of an amber light, located 166.4 cm
above the floor and 18.5 cm left of center. The
monetary value of each reinforcer was added
to a digital counter centered 168.3 cm above
the floor.

A 15-W houselight situated behind the
apparatus provided dim illumination. White
noise was employed to mask extraneous
sounds. A computer operating under MED-
PCH software controlled programming of
experimental events and recording of data.

Procedure

During each session, participants pressed
the response lever to earn points exchange-
able for money on a series of five concurrent
VI VI schedules. The mean values were 17 s to
720 s, 25 s to 300 s, 51 s to 51 s, 300 s to 25 s,
and 720 s to 17 s. The programmed VI values
were determined by Fleshler and Hoffman’s
(1962) method. The VI schedule used for each
alternative was independent of that used for
the other alternative.

At the beginning of each session, the
houselight, session light, a white light signal-
ing the reinforcement schedule, and a red
light signaling the reinforcer magnitude were
illuminated. One VI VI pair was presented for
10 min, then a blackout period was presented
for 5 min, and then the next pair was
presented for 10 min, and so on (Bradshaw,
Szabadi, & Bevan, 1976; Dallery et al., 2000),
until all schedules were presented. Participants
remained standing to make responses on the
lever, but were permitted to sit during black-
outs. The order of schedules within each
session was arranged randomly without re-
placement. Each VI VI pair was signaled by
a unique arrangement of the white and red

stimulus lights, which were the same across
participants.

Reinforcer magnitude was manipulated
across sessions. The monetary values on one
alternative (Schedule A) were $0.20, $0.12,
$0.07, $0.004, and $0.0025. Reinforced lever
presses on the other alternative (Schedule B)
always resulted in a $0.07 reinforcer. The
Schedule A value varied randomly without
replacement across blocks of five sessions.
Thus, across five sessions, participants were
exposed to all five magnitude combinations.

Participants switched between the two con-
current alternatives by pressing the pushbut-
ton (Findley, 1958). The blue light above the
pushbutton signaled a changeover response by
turning off if it was on, or turning on if it was
off. A response at the changeover button
changed the stimulus lights and associated
schedules in effect. Following a response at the
changeover button, a lever press could not be
reinforced for X seconds, which is called
a changeover delay (COD) (Herrnstein,
1961). COD values for the first 3 participants
(H59, H60, and H64) were determined by
exposing them to the five VI VI pairs and
varying the COD between 0 s and 5 s.
Reinforced responses on both alternatives
resulted in $0.07. The changes in COD across
39, 42, and 101 sessions showed no systematic
effect on the parameters of the generalized
matching equation (i.e., Equation 5) for these
3 participants (H59, H60, and H64, respec-
tively). Specifically, longer CODs did not
produce sensitivity parameters closer to one,
or perfect matching. Therefore, the COD was
set at the final COD value for each of these 3
participants. The COD was 3 s for H59, and 2 s
for H60 and H64. Because differences in the
COD had little effect for the previous partic-
ipants, the COD was set conservatively at 5 s
for H67, H69, and H70.

Before beginning the experiment, partici-
pants were given an orientation session in
which they viewed the experimental room,
operated the apparatus, and received an
explanation of what the experiment entailed.
During the orientation, instructions about
the experimental sessions were given (see
Appendix A).

If the applicant expressed interest in par-
ticipating, he or she read and signed a consent
form that detailed the duration of the exper-
iment, payment terms, and situations where
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monetary deductions could be assessed (e.g.,
withdrawal from the study before completion).
The local Institutional Review Board approved
all study procedures and the consent process.

RESULTS

A time-series analysis, Tryon’s C-Statistic
(a 5 0.1; Tryon, 1982), was used to identify
stable response rates across eight-session
blocks in each condition. The first three
sessions in each condition were excluded from
the stability analysis. The analysis was per-
formed on response rates for each alternative
of the concurrent schedules. Table 1 lists the
session at which the stability criterion was
satisfied for each subject. Approximately half
of the conditions were stable by Session 11,
and the maximum number of sessions was 22.
Reinforcement and response rates were aver-

aged over the first stable eight-session block
(see Appendix B). For example, if the data for
a concurrent pair were stable by Session 11,
then Sessions 4 to 11 for that pair were used in
the analysis, and if the data were stable at
Session 22 for another concurrent pair, then
Sessions 15 to 22 were used in the analysis.

First, the formal theory was tested. Recall
that formal theory requires the same k within
a magnitude pair. Thus a different k was
allowed for each magnitude pair for each
participant, which resulted in five ks per
participant. In terms of re , the most conserva-
tive approach is to hold it constant across
concurrent magnitude pairs. That is, insofar as
formal theory only consists of rates and does
not make predictions regarding how (or if) re

should change with magnitude, extraneous
reinforcement rate was assumed to remain
constant across concurrent magnitude pairs.

Table 1

The first session at which the stability criterion was satisfied for each participant at each
concurrent VI VI pair. Response rates were deemed stable across the eight sessions before and
including the session indicated below. For each concurrent pair, data were averaged across the
eight sessions before and including the session indicated below.

Participant
Schedule A
magnitude

Concurrent VI VI schedules

VI 17 – VI 720 VI 25 – VI 300 VI 51 – VI 51 VI 300 – VI 25 VI 720 – VI 17

H59 $0.2 15 15 11 15 12
$0.12 12 13 11 11 13
$0.07 11 12 13 11 11
$0.004 11 11 19 19 11
$0.0025 11 11 14 20 20

H60 $0.2 12 11 11 11 11
$0.12 13 11 16 11 11
$0.07 11 11 11 16 11
$0.004 11 11 11 11 11
$0.0025 12 11 14 14 11

H64 $0.2 11 13 11 13 12
$0.12 11 11 16 11 11
$0.07 13 11 12 13 11
$0.004 18 12 14 12 11
$0.0025 12 13 11 21 12

H67 $0.2 11 11 11 14 16
$0.12 11 14 13 14 11
$0.07 11 11 11 11 11
$0.004 12 12 12 11 11
$0.0025 12 11 18 15 11

H69 $0.2 11 12 11 16 11
$0.12 13 11 11 16 16
$0.07 12 11 11 11 16
$0.004 13 12 11 11 13
$0.0025 11 12 11 18 12

H70 $0.2 11 13 22 12 12
$0.12 13 13 14 12 14
$0.07 11 11 13 13 11
$0.004 11 11 18 11 11
$0.0025 11 17 19 11 12
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Equations 4a and 4b were fitted simulta-
neously to the data from all magnitude pairs
for each participant. The rationale for the
simultaneous fitting method is that it permits
different equations to share parameter values,
which is ideal for testing the equal-k require-
ment. That is, one k was shared by both
equations at each magnitude pair, and one re

was shared for all equations at all magnitude
pairs. The simultaneous fitting method pro-
ceeded as follows: Equation 4a produced
a residual sum of squares (RSS) for each
magnitude on Schedule A, and Equation 4b
produced a RSS for each magnitude on
Schedule B. The ratio of the RSS to the total
sum of squares (i.e., RSS/SS), summed over all
magnitudes, was minimized. In other words,
given five magnitudes, five ks and one re can be
found such that

R SS1a

SS1a
z

R SS1b

SS1b
z

R SS2a

SS2a
z

R SS2b

SS2b

z � � �z R SS5b

R SS5b
,

is a minimum. The numerical subscripts refer
to each magnitude condition and the letters
correspond to Schedules A and B. The analysis
was performed using MicrosoftH Excel’s Solver
routine. The same method was used for all
subsequent fits.

Table 2 shows the results of the regressions.
In most cases, the equation accounted for
a high percentage of the variance in response
rate. To fit the equations to H67’s data, we
constrained re to be greater than or equal to
zero. Otherwise, the re became negative for this
participant. The median percentage of vari-
ance accounted for (%VAC) and median
parameter values for all participants, with the
exception of H69, are shown at the bottom of
the table. For H69, the mean of the response
rates at each magnitude accounted for more
variance than the equation, and negative
%VACs were obtained for all but one fit
($0.0025; with an obtained %VAC of 7). As
can be seen in Appendix B, response rates for
this participant showed very little variability
despite large changes in reinforcement rate
and reinforcer magnitude. Data from this
participant were therefore excluded from this
analysis.

Figure 1 shows the standardized residuals as
a function of the response rates predicted by

Equations 4a and 4b. Residuals are pooled
across magnitudes and participants. The stan-
dardized residuals were significantly correlated
with the predicted response rates for Sched-
ule A (r 5 2.47, p , .05) and Schedule B
(r 5 2.56, p , .05). The negative correlation
indicates that the equations predicted lower
response rates than obtained at low reinforce-
ment rates, and higher response rates than
obtained at high reinforcement rates.

Testing the modern form of Herrnstein’s
theory requires simultaneously fitting Equa-
tions 5, 6a, 6b, and 7 to the data. For purposes
of fitting, some of the parameters in Equa-
tions 6a, 6b, and 7 cannot be independently
estimated. Thus composite parameters must
be estimated as follows:

c1e~
r a1e
e

b1e
,

and

c2e~
r a2e
e

b2e
:

We, therefore, can write Equations 6a, 6b, and
7 as

R1~k c1e
1

r1

� �a1e

z
1

b12

r2

r1

� �a12

z1

� �{1

, ð6a9Þ

R2~k c2e
1

r2

� �a2e

zb12
r1

r2

� �a12

z1

� �{1

, ð6b9Þ

and

R1

R2
~

c2e

c1e

r a1e

1

r a 2e

2

� �
: ð79Þ

Equations 5, 6a9, 6b9 and 79 were fitted to the
data.

The fitting procedure followed the same
logic described for the formal theory. Equa-
tions 5 and 79 produced a RSS for the ratio of
response rates for each magnitude on Sched-
ules A and B, Equation 6a9 produced a RSS for
response rates for each magnitude on Sched-
ule A, and Equation 6b9 produced a RSS for
response rates for each magnitude on Sched-
ule B. The ratio RSS/SS, summed over all
magnitudes, was minimized. When minimizing
this quantity, some parameters were free to
vary across magnitude pairs, and some were
held constant for a participant. We will discuss

FORMAL AND MODERN MATCHING THEORY 135



the reasons for these decisions about the
parameters in more detail below.

Table 3 shows the results of the fits to the
data. When a parameter was free to vary
across magnitude pairs then several values
are listed for a participant. When a parameter
was shared by the appropriate equations, or
held constant, one value is listed. For example,
because all equations in which k appears
shared the same k value, which includes fits
of Equations 6a9 and 6b9 to each alternative
across all magnitude pairs, one k was used.
Because reinforcer magnitude varied on

Schedule A, bias for this alternative should
change across magnitude pairs (Baum, 1974,
1979), and therefore b12 and c1e were allowed
to vary. Finally, the fitting procedure used
three sensitivity parameters per participant,
one for each of the three concurrent pairs
(i.e., a12, a1e, and a2e), and one c2e per partic-
ipant. As can be seen in Table 3, the fits were
excellent. With few exceptions, the %VACs by
the equations were above 90%.

Figure 2 shows the standardized residuals
plotted against the predicted response rates
for Equations 6a9 and 6b9. Results are pooled

Table 2

Least square fits of the formal theory to the response rates for each participant. Both Equation 4a
and Equation 4b were fitted simultaneously to the Schedule A and Schedule B data and all
magnitudes for each participant. One k per magnitude pair and one re overall were obtained for
each participant. The dashes under the Magnitude on Schedule A column are used to indicate
that re was held constant across magnitudes. The percentages of variance accounted for (%VAC)
by Equation 4a and 4b for each magnitude are provided in the right columns.

Participant
Magnitude on

Schedule A k re

%VAC

Equation 4a Equation 4b

H59 – 9.5
$0.20 44.8 97 99
$0.12 43.2 97 98
$0.07 43.3 99 98
$0.004 40.3 96 94
$0.0025 40.9 99 83

H60 – 13.4
$0.20 57.5 89 97
$0.12 56.4 92 94
$0.07 57.7 95 98
$0.004 54.3 88 62
$0.0025 55.5 84 51

H64 – 45.2
$0.20 63.3 93 97
$0.12 56.8 97 99
$0.07 58.0 99 100
$0.004 52.0 95 87
$0.0025 49.2 99 96

H67 – 0.0
$0.20 61.8 65 85
$0.12 61.2 66 79
$0.07 62.9 79 81
$0.004 59.1 70 55
$0.0025 59.7 69 27

H70 – 69.6
$0.20 120.5 30 78
$0.12 115.9 28 74
$0.07 108.2 35 48
$0.004 112.0 15 2229a

$0.0025 104.5 40 2101a

Median – 13.4
$0.20 61.8 89 97
$0.12 56.8 92 94
$0.07 58.0 95 98
$0.004 54.3 88 62
$0.0025 55.5 84 51

a A negative VAC occurs when the average of the data accounts for more variance than the fitted function.
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across all participants. The correlations were
not significant. Figure 3 shows the residual
plots for Equation 5 and 79. The correlations
for both equations were not significant. In
addition, none of the correlations for individ-
ual participants was significant with alpha set
to .05.

Given that the fits and residuals were
acceptable, we can now evaluate the param-
eters. The ks ranged from 48 responses per
minute to 134 responses per minute, with
a median of 74 responses per minute. The
values for the sensitivity parameters, a12, a1e,
and a2e, ranged from 0.22 to 0.94, with median
values of 0.58, 0.54, and 0.52, respectively. The
composite parameter c1e increased as magni-
tude decreased, from a median of 5.71 when

$0.20 was the reinforcer on Schedule A, to
12.79 when $0.0025 was the reinforcer. The
composite c2e parameter ranged from 0.49
to 33.34, with a median of 1.97. Finally, the
bias parameter b12 decreased as the magnitude
on Schedule A decreased, from a median
of 1.37 when $0.20 was the reinforcer on
Schedule A, to 0.64 when $0.0025 was the
reinforcer.

Because joint fits of Equations 6a9 and 6b9
are probably unfamiliar, fits of these equations
to the averaged reinforcement and response
rates, across all participants, are shown in
Figure 4. The left column shows the fits of
Equation 6a9 to the Schedule A response rates,
and the right column shows the fits of
Equation 6b9 to the Schedule B response rates
for three reinforcer magnitudes. Each plot
shows how changes in reinforcement rate from
two alternatives jointly govern response rate at
one alternative of the concurrent schedule.
Across plots, we also can see how changes in
reinforcer magnitude affect responding. Only
the curvature of the function changes with
reinforcer magnitude.

DISCUSSION

Six humans responded for points exchange-
able for money on five concurrent VI VI
schedules. Each concurrent schedule was
presented during each daily session. Rein-
forcer magnitude on one alternative was varied
systematically across sessions, while the magni-
tude at the other alternative remained con-
stant. We tested the formal theory of matching
by fitting Equations 4a and 4b to the data. One
k was estimated per magnitude pair, as re-
quired by the theory. Formal theory requires
a single k at each concurrent alternative
because the ks in Equations 4a and 4b
represent the same sum of response rates.
One re per participant was estimated, which
assumes that the rate of extraneous reinforce-
ment remained constant across magnitude
pairs. Although the equations accounted for
a high percentage of variance in response
rates, there was a significant negative correla-
tion between the standardized residuals and
the predicted response rates (Figure 1). The
negative correlation indicates that the equa-
tions systematically under- and then over-
predicted response rates as reinforcement rate
increased. The results suggest that the formal

Fig. 1. Standardized residuals as a function of the
predicted response rates for Equation 4a, Schedule A (top
panel) and Equation 4b, Schedule B (bottom panel).
Pearson’s correlation coefficients are shown in each panel.
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theory of matching is not an adequate de-
scription of reinforced responding.

One may argue that our application of
formal theory was too conservative because
we used one re per participant. It may be
tempting to assume that re must change across
magnitude pairs, as the units for re are
changing from magnitude pair to magnitude
pair. However, in formal theory re is not
a measure of amount per unit time; it is
a measure of counts per unit time (McDowell,
1986, 2005). Furthermore, the re in both
equations represents the same quantity. Just
as k for each equation represents the same sum
of response rates, re for each equation repre-
sents the same sum of reinforcement rates.
Similarly, because magnitude differed between
the two schedules (i.e., Schedule A and B),
one may assume that the units for r1, r2, and reP
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Fig. 2. Standardized residuals as a function of the
predicted response rates for Equations 6a9, Schedule A
(top panel) and 6b9, Schedule B (bottom panel).
Pearson’s correlation coefficients are shown in each panel.
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should be different, which would produce
dimensional inconsistencies for each equa-
tion. However, all of the variables in the
denominators are measured in terms of counts
per unit time. Therefore, there are no di-
mensional inconsistencies in the denomina-
tors of Equations 4a and 4b.

Although it is reasonable to suppose that
extraneous reinforcement rate should remain
constant, formal theory does not prohibit
variation in re . The rate of extraneous reinforc-
ing events may vary across magnitude pairs,
but the theory does not predict how or if re

should vary with magnitude. In other words,
variation in re could occur, and the variation
could occur in any direction. To test formal
theory with this more lenient constraint, we
fitted Equations 4a and 4b and allowed one k
and one re per magnitude pair, which resulted

in five ks and five res per participant. The
results were very similar to those discussed
above. Specifically, although the %VAC by the
equations remained high, the residuals were
correlated with the predicted response rate for
Equation 4a (r 5 2.45) and Equation 4b (r 5
2.57). Both were statistically significant with
alpha set at .05. Thus, regardless of the
constraints on re, the theory does not account
for the data.

For theoretical reasons, no further restric-
tions can be lifted on whether k or re varies
with reinforcer magnitude. It would be possi-
ble, however, to estimate two ks per magnitude
pair, and then examine whether the two values
were equal. This is not a more lenient test; it is
merely a different way to test the same
theoretical restriction that the ks obtained at
each alternative of a concurrent schedule must
be equal. The drawback to this method is that,
in the absence of large differences between the
ks, the results are more difficult to interpret
relative to the simultaneous fitting procedure.
For example, assume we measure two ks, and
both have a standard error of five responses per
minute. At what point would we consider the ks
‘‘equal’’: when they differ by 10, 5, or only 2.5
responses per minute? The current method is
simply a more sensitive and robust test of the
equal-k requirement. The negative correlation
in the residuals leaves little doubt that the
formal model does not describe the data.

The modern version of matching provided
an excellent description of reinforced re-
sponding. The median %VAC by the four
modern matching equations ranged from 95%
to 99%. The residual plots appeared random
(Figures 2 and 3), and none of the correlations
between the standardized residuals and the
predicted response rates was statistically signif-
icant. The fits of Equations 6a9 and 6b9 shown
in Figure 4 imply that changes in response rate
on each alternative of a concurrent schedule
can be accounted for by changes in reinforce-
ment rate and bias for one or the other
alternative, and that behavior was somewhat
insensitive to changes in reinforcement rate.

In addition, the fits were consistent with
theoretical predictions and requirements. For
example, because the development of modern
theory followed Herrnstein’s (1970, 1974; de
Villiers & Herrnstein, 1976) assumption that
total behavior should remain constant, k was
held constant. With just one k, the fits were

Fig. 3. Standardized residuals as a function of the
predicted response ratios for Equations 5 (top panel), and
79 (bottom panel). Pearson’s correlation coefficients are
shown in each panel.
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Fig. 4. Relation between response rate at each alternative as a joint function of reinforcement rate on Schedule A (r1)
and Schedule B (r2). The smooth surface in each panel on the left represents the fit of Equation 6a9 to the data, and the
smooth surface in each panel on the right represents the fit of Equation 6b9 to the data.

FORMAL AND MODERN MATCHING THEORY 141



excellent. McDowell (2005) also found that
the modern version of matching accurately
described responding on single and concur-
rent schedules of reinforcement in rats, and
that it could account for the violation of classic
theory’s constant-k requirement. Furthermore,
because reinforcer magnitude varied on
Schedule A, bias for this alternative should
change across magnitude pairs (Baum, 1974,
1979). This meant that b12 and c1e were allowed
to vary across magnitude pairs. As expected,
b12 decreased as the magnitude on Schedule A
decreased. Similarly, c1e increased as magni-
tude decreased, which is reasonable given that
the denominator—bias for the Schedule A
alternative—should have decreased as magni-
tude on that alternative decreased. The nu-
merator of c1e, the rate of extraneous
reinforcement, re

a1e, was assumed to remain
constant. The other composite parameter, c2e,
also consists of a bias parameter, b2e, and an
extraneous reinforcement parameter, re. Bias
should not have changed between Schedule B
and extraneous alternatives, as the magnitude
on Schedule B was always $0.07, and we
assumed that extraneous reinforcement re-
mained constant. Therefore, c2e was held
constant. Of course, we cannot determine
whether the numerator or denominator
changed in either composite parameter, but
their values were consistent with these assump-
tions.

The assertion that re should have remained
constant, despite changes in reinforcer mag-
nitude, may still come as a surprise. The idea
that re represents counts per unit time was
introduced in the context of formal theory, as
it is a requirement of formal theory. In the
context of modern theory, re also represents
counts per unit time. Here, the bias parameter
accommodates any change in reinforcer mag-
nitude (or changes in response properties for
that matter). This is consistent with the
foundational equation for modern theory,
the generalized matching equation. If differ-
ent reinforcer magnitudes are arranged on
two concurrent schedules, then b in Equation
5 accounts for the difference in magnitude.
Therefore, to be consistent with common
usage in matching theory, the same would
hold if the constituents of the concurrent pair
were a programmed and an unprogrammed
(extraneous) alternative (McDowell, 2005).
The units for both reinforcer events would

be counts per unit time, and any change in
magnitude would be accommodated by
changes in bias, b. Therefore, re was assumed
to remain constant across magnitude pairs
(see Soto et al., 2005, for further discussion of
the constant-re assumption).

Finally, the fitting procedure also used three
sensitivity parameters per participant, one for
each of the three concurrent pairs (i.e., a12, a1e,
and a2e). The decision to use one a per concur-
rent pair, rather than letting them vary with
magnitude, was based on parsimony and the
lack of evidence that sensitivity to reinforcement
rate should change with magnitude (Baum,
1979; Landon, Davison, & Elliffe, 2003). The
obtained values appear to be consistent with
existing data (e.g., Baum, 1979), although they
are somewhat lower than expected. In addition,
the sensitivity parameters for Participant H69
are quite low, which reflects this subject’s
relatively constant response rate despite large
changes in reinforcement rate (H69’s mean
response rate was 12 responses per minute, with
a range of 5 to 20; see Appendix B).

In a recent test of modern matching theory,
McDowell (2005) used one a for all concurrent
pairs. This is a more conservative approach
than the one taken here, which assumed that
sensitivity varied depending on the particular
alternatives that comprised each concurrent
pair. Arguably, a human may discriminate
better between a programmed and an un-
programmed source of reinforcement (i.e., a1e

and a2e) compared to two programmed
sources of reinforcement (i.e., a12). In the
former case, the responses (pressing a lever
versus engaging in any other behavior) and
reinforcers are qualitatively different, whereas
in the latter case, the responses are identical
(pressing the same lever) and the reinforcers
are similar (different amounts of money).
Although the highest as were obtained consis-
tently for a1e, there was very little difference
between a12 and a2e. Indeed, the median as
for each concurrent pair suggest that the as
were roughly equivalent regardless of the
constituents of the concurrent pair (Table 3).
Such data lend some support to the notion
that the source of reinforcement may not
affect the organism’s sensitivity to reinforce-
ment rates derived from these sources, which
accords with McDowell’s single-a approach.

Other features of the present results are
consistent with McDowell’s (2005) test of
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modern matching theory’s description of
responding under concurrent schedules.
McDowell fitted Equations 5, 6a9, and 6b9 to
Dallery et al’s (2004) data from 4 rats
responding on concurrent VI VI schedules. A
75% sucrose pellet was used as the reinforcer
in one component and a 50% sucrose pellet
was used as the reinforcer in the other
component. The results of the reanalysis by
McDowell were consistent with the results of
the current study in that the median %VAC by
the equations was 96.5%, and the standardized
residuals were not correlated with the pre-
dicted response rates. Furthermore, the esti-
mates of the bias parameter, b12, were 1.05,
1.08, 1.05, and 0.88, which indicates a slight
preference for the 75% sucrose pellet over the
50% pellet for 3 of the 4 rats. Finally, the
estimates of the single exponent, a, were 0.52,
0.64, 0.80, and 0.76.

Previous tests of matching theory’s descrip-
tion of single VI responding were tests of
classic matching theory (e.g., Bradshaw et al.,
1978; Dallery et al., 2000; de Villiers, 1977;
Heyman & Monaghan, 1987, 1994; McDowell
& Dallery, 1999; McDowell & Wood, 1984,
1985; Snyderman, 1983; see Dallery & Soto,
2004, and Williams, 1988, for reviews). That is,
these studies used a hyperbolic equation,
Equation 2, which did not include parameters
for bias and sensitivity, and they tested the
assumption that k remains constant across
reinforcer magnitude. Because k varied with
magnitude, several authors suggested that
total behavior does not remain constant, and
therefore that Herrnstein’s classic theory of
response rate is false. In contrast, the present
results suggest that modern theory’s constant-k
requirement is tenable. After incorporating
bias and sensitivity into the relevant equa-
tions, using a single k across magnitude pairs
provided an excellent description of the
relation between reinforcement and respond-
ing. The modern theory of matching may
represent a theoretically coherent and accu-
rate description of responding on concurrent
and single-alternative schedules of reinforce-
ment.

REFERENCES

Baum, W. M. (1974). On two types of deviation from the
matching law: Bias and undermatching. Journal of the
Experimental Analysis of Behavior, 22, 231–242.

Baum, W. M. (1979). Matching, undermatching, and
overmatching in studies of choice. Journal of the
Experimental Analysis of Behavior, 32, 269–281.

Bradshaw, C. M., Szabadi, E., & Bevan, P. (1976). Behavior
of humans in variable-interval schedules of reinforce-
ment. Journal of the Experimental Analysis of Behavior, 26,
135–141.

Bradshaw, C. M., Szabadi, E., & Bevan, P. (1978).
Relationship between response rate and reinforcement
frequency in variable-interval schedules: The effect of
concentration of sucrose reinforcement. Journal of the
Experimental Analysis of Behavior, 29, 447–452.

Dallery, J., McDowell., J. J, & Lancaster, J. S. (2000).
Falsification of matching theory’s account of single-
alternative responding: Herrnstein’s k varies with
sucrose concentration. Journal of the Experimental
Analysis of Behavior, 73, 23–43.

Dallery, J., McDowell., J. J, & Soto, P. L. (2004). The
measurement and functional properties of reinforcer
value in single-alternative responding: A test of linear
system theory. The Psychological Record, 54, 45–65.

Dallery, J., & Soto, P. L. (2004). Herrnstein’s hyperbola
and behavioral pharmacology: Review and critique.
Behavioural Pharmacology, 15, 443–459.

de Villiers, P. (1977). Choice in concurrent schedules and
a quantitative formulation of the law of effect. In W. K.
Honig, & J. E. R. Staddon (Eds.), Handbook of operant
behavior (pp. 233–287). Englewood Cliffs, NJ: Prentice
Hall.

de Villiers, P. A., & Herrnstein, R. J. (1976). Toward a law
of response strength. Psychological Bulletin, 83,
1131–1153.

Findley, J. D. (1958). Preference and switching under
concurrent scheduling. Journal of the Experimental
Analysis of Behavior, 1, 123–144.

Fleshler, M., & Hoffman, H. S. (1962). A progression for
generating variable interval schedules. Journal of the
Experimental Analysis of Behavior, 5, 529–530.

Herrnstein, R. J. (1961). Relative and absolute strength
of response as a function of frequency of reinforce-
ment. Journal of the Experimental Analysis of Behavior, 4,
267–272.

Herrnstein, R. J. (1970). On the law of effect. Journal of the
Experimental Analysis of Behavior, 13, 243–266.

Herrnstein, R. J. (1974). Formal properties of the
matching law. Journal of the Experimental Analysis of
Behavior, 21, 159–164.

Heyman, G. M., & Monaghan, M. M. (1987). Effects of
changes in response requirement and deprivation on
the parameters of the matching law equation: New
data and review. Journal of Experimental Psychology:
Animal Behavior Processes, 13, 384–394.

Heyman, G. M., & Monaghan, M. M. (1994). Reinforcer
magnitude (sucrose concentration) and the matching
law theory of response strength. Journal of the
Experimental Analysis of Behavior, 61, 505–516.

Landon, J., Davison, M., & Elliffe, D. (2003). Concurrent
schedules: Reinforcer magnitude effects. Journal of the
Experimental Analysis of Behavior, 79, 351–365.

McDowell, J. J (1986). On the falsifiability of matching
theory. Journal of the Experimental Analysis of Behavior,
45, 63–74.

McDowell, J. J (2005). On the classic and modern theories
of matching. Journal of the Experimental Analysis of
Behavior, 84, 111–127.

FORMAL AND MODERN MATCHING THEORY 143



McDowell, J. J, & Dallery, J. (1999). Falsification of
matching theory: Changes in the asymptote of
Herrnstein’s hyperbola as a function of water depri-
vation. Journal of the Experimental Analysis of Behavior,
72, 251–268.

McDowell, J. J, & Wood, H. M. (1984). Confirmation of
linear system theory prediction: Changes in
Herrnstein’s k as a function of changes in reinforcer
magnitude. Journal of the Experimental Analysis of
Behavior, 41, 183–192.

McDowell, J. J, & Wood, H. M. (1985). Confirmation of
linear system theory prediction: Rate of change of
Herrnstein’s k as a function of response-force re-
quirement. Journal of the Experimental Analysis of
Behavior, 43, 61–73.

Skinner, B. F. (1972). Are theories of learning necessary? In
B. F. Skinner (Ed.), Cumulative Record: Third Edition.
New York: Appleton Century Crofts, (Reprinted from
Psychological Review, 57, 1950, 193–216)

Snyderman, M. (1983). Body weight and response
strength. Behavior Analysis Letters, 3, 255–265.

Soto, P. L., McDowell, J. J, & Dallery, J. (2005). Effects of
adding a second reinforcement alternative: Implica-
tions for Herrnstein’s interpretation of re . Journal of
the Experimental Analysis of Behavior, 84, 185–225.

Tryon, W. W. (1982). A simplified time-series analysis for
evaluating treatment interventions. Journal of Applied
Behavior Analysis, 15, 423–429.

Warren-Boulton, F. R., Silberberg, A., Gray, M., & Ollom,
R. (1985). Reanalysis of the equation for simple
action. Journal of the Experimental Analysis of Behavior,
43, 265–277.

Williams, B. A. (1988). Reinforcement, choice, and
response strength. In R. C. Atkinson, R. J. Herrn-
stein, G. Lindzey, & R. D. Luce (Eds.), Stevens’
Handbook of Experimental Psychology (2nd ed., Vol. 2,
pp. 167–244). New York: Wiley.

Received September 27, 2004
Final acceptance May 20, 2005

APPENDIX A

Instructions Given to Participants During the
Orientation Session

During a session, this green light will turn
on. Also, one of these white lights and one of
these red lights will turn on. While the green
light, one of the white lights, one of the red
lights, and the small lamp-light behind the
machine are on, you can earn money by
pressing the lever.

The lever must be pushed all the way down
and then let all the way back up in order for it
to count. You can tell that you have pushed far
enough when you hear a click from the
machine. Remember, the lever has to go all
the way down and all the way back up again.
This is not a test of strength or speed.
However, the amount of money that you earn
does depend on your pressing this lever.

This counter will keep track of the money
that you have earned. The amount that you
earn will be shown here in dollars. Sometimes
when you press the lever, a beep will sound
and this amber light will flash. When you hear
the beep and see the amber light flash, you
have earned more money. Each time you earn
more money, it will be added to the previous
amount, and will be shown on the counter.

These lights will be on for ten minutes (the
green, white, and red lights, and the light
behind the machine). During that time you
can press the lever and earn money. After ten
minutes, all lights except the small green one
will turn off for five minutes. During this time

you are to rest here in the room. You cannot
earn money during the rest. After the five-
minute rest, the light behind the machine,
a white light, and a red light will turn on for
ten minutes, and you can again press to earn
money. These ten-minute work periods fol-
lowed by five-minute rest periods will continue
for the entire session, which is about 70 min-
utes long. You will have three of these 70-
minute sessions each day, with a ten-minute
break between each. At the end of each 70-
minute session, the green, white, and red
lights will all turn off. Then I will come in and
record the amount of money that you earned.

At any time during a work period, you can
press this button and switch to work with
a different combination of red and white
lights. Pressing this button will turn on the
small blue light above the button. Most of the
time, it will also turn on a different white light,
or a different white light and a different red
light. Pressing the button again will turn off
the light beside the button, and will return you
to the previous combination of lights.

Before you leave for the day, I will give you
a receipt for your earnings. You will receive
payment according to the terms of the
contract that you sign. On average, you can
earn up to $6.50 per hour, although your exact
pay will depend on your performance pressing
the lever. This is an average over the entire
project. Some days you will earn more money
than others. However, at the conclusion of the
project the average amount that you earn
could be as much as $6.50 per hour.
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