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A model of conditional discrimination performance (Davison & Nevin, 1999) is combined with the
notion that unmeasured attending to the sample and comparison stimuli, in the steady state and during
disruption, depends on reinforcement in the same way as predicted for overt free-operant responding
by behavioral momentum theory (Nevin & Grace, 2000). The rate of observing behavior, a measurable
accompaniment of attending, is well described by an equation for steady-state responding derived from
momentum theory, and the resistance to change of observing conforms to predictions of momentum
theory, supporting a key assumption of the model. When probabilities of attending are less than 1.0, the
model accounts for some aspects of conditional-discrimination performance that posed problems for
the Davison-Nevin model: (a) the effects of differential reinforcement on the allocation of responses to
the comparison stimuli and on accuracy in several matching-to-sample and signal-detection tasks where
the differences between the stimuli or responses were varied across conditions, (b) the effects of overall
reinforcer rate on the asymptotic level and resistance to change of both response rate and accuracy of
matching to sample in multiple schedules, and (c) the effects of fixed-ratio reinforcement on accuracy.
Some tests and extensions of the model are suggested, and the role of unmeasured events in behavior
theory is considered.
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_______________________________________________________________________________

In order for stimuli to control behavior,
organisms must attend to them. Dinsmoor
(1985) suggested that effective stimulus con-
trol depends on contact with the relevant
stimuli via overt observing behavior, and that
for a complete understanding ‘‘. . . we are
obliged to consider analogous [to observing]
processes . . . commonly known as attention.
The processes involved in attention are not as
readily accessible to observation as the more
peripheral adjustments, but it is my hope and
my working hypothesis that they obey similar
principles.’’ (p. 365). Although attention is
usually construed as a cognitive process, we
view attending as unmeasured (possibly co-

vert) operant behavior that accompanies mea-
surable observing. Attending, we suggest, is
selected and strengthened by the reinforcing
consequences of overt discriminated operant
behavior that would be less frequently rein-
forced in the absence of attending. Following
Dinsmoor, we assume that the unmeasured
behavior of attending to discriminative stimuli
is related to the rates of reinforcement
correlated with those stimuli in the same way
as measured free-operant response rate.

In this paper, we develop a model of
attending that parallels a version of behavioral
momentum theory for free-operant respond-
ing and incorporate it into a general account
of discriminated operant behavior (Davison &
Nevin, 1999). We begin by reviewing behav-
ioral momentum theory as it applies to re-
sistance to change of overt responding, extend
it to account for steady-state response rate, and
propose a model of attending based on its
principles. Next, we review the Davison-Nevin
model and indicate some of its shortcomings.
We then show that when the momentum-
based model of attending is combined with the
Davison-Nevin model, the combination can
account for some data that posed problems for
the original model: the effects of differential
reinforcement for the two correct responses in

Preparation of this article was supported by NIMH
Grant MH65949 to the University of New Hampshire. A
preliminary version was presented at the meeting of the
Society for the Quantitative Analyses of Behavior, May
2004. We thank Stephen Lea for his thoughtful comments
and suggestions on an earlier version of the manuscript.

doi: 10.1901/jeab.2005.97-04

Correspondence should be addressed to John A. Nevin,
RR2, Box 162, Vineyard Haven, Massachusetts, 02568 (e-
mail: jnevin@cisunix.unh.edu); Michael Davison, Depart-
ment of Psychology, University of Auckland, Private Bag
92019, Auckland, New Zealand (e-mail: m.davison@
auckland.ac.nz); or Timothy Shahan, Department of
Psychology, Utah State University, Logan, Utah, 84322
(e-mail: Tim.Shahan@usu.edu).

JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 2005, 84, 281–303 NUMBER 2 (SEPTEMBER)

281



conditional discriminations; the effects of
overall reinforcer rate on conditional discrim-
ination accuracy in the steady state and during
disruption by briefly imposed experimental
variables; and the effects of fixed-ratio re-
inforcement for conditional discrimination.

The development of our model depends on
three fundamental assumptions. First, mea-
sured operant behavior in the steady state as
well as during disruption depends on the
reinforcer rate correlated with a distinctive
stimulus, relative to the overall reinforcer rate
in the experimental context, according to
a function derived from behavioral momen-
tum theory (Nevin & Grace, 2000). Second,
attending to discriminative stimuli depends
on the reinforcer rate that accompanies
the unmeasured behavior of attending in
the same way as measured operant respond-
ing, both in the steady state and during
disruption, with reinforcer rate expressed
relative to the context in which those stimuli
appear. And third, given that a subject attends
to the relevant stimuli, its behavior is described
by the Davison-Nevin (1999) model of condi-
tional-discrimination performance.

Readers may question the utility of a model
that invokes unmeasured, possibly covert,
attending behavior (see, for example, the
vigorous discussions of the varieties of theory
in behavior analysis edited by Marr [2004]).
There are several reasons for pursuing this
approach. First, we show that the value of
a single variable in the model—the probability
of attending—determines the form of rela-
tions between measured discrimination per-
formance and empirical variables. Thus the
model provides a basis for organizing diverse
results that have been reported in the litera-
ture. Second, the model identifies a behavioral
process with properties like those of overt
behavior that leads to testable predictions and
challenges researchers to investigate directly
measurable counterparts of the terms of the
model in relation to reinforcement variables.
Third, even if overt counterparts of its
terms prove to be elusive, the model provides
a way to infer the effects of reinforcement
on covert activities that are involved in
stimulus control, consistent with the radical
behaviorist view that ‘‘. . . private events are
natural and in all important respects like
public events’’ (Baum, 1994, p. 41; see also
Skinner, 1974).

BEHAVIORAL MOMENTUM THEORY

Behavioral momentum theory (Nevin &
Grace, 2000) has been concerned with re-
sistance to change during relatively short-term
disruption. It is related metaphorically to
Newton’s second law in classical mechanics,
which states that the change in the velocity of
a body is directly proportional to an external
force and inversely proportional to the body’s
inertial mass. Nevin, Mandell, and Atak (1983)
modeled response rates during disruption as

log
Bx

Bo
~

{x

m
, ð1Þ

where Bo is baseline response rate, Bx is
response rate during disruption, x is the value
of the disrupter with its decremental effects
indicated by the minus sign, and m is
behavioral mass. Virtually all of the relevant
research has employed multiple variable-in-
terval (VI) VI schedules to control obtained
reinforcer rates and to permit within-session
comparisons of resistance to change. In a re-
view of all his data, Nevin (1992b) suggested
that behavioral mass (m) in a schedule com-
ponent was a power function of reinforcer rate
in that component (rs), relative to the overall
average reinforcer rate in a session (ra), which
is based on time in both components and in
intercomponent intervals. Thus m 5 (rs /ra)b,
where b measures the sensitivity of relative
resistance to relative reinforcement. For ex-
ample, if b 5 1.0, the ratio of log proportions
of baseline in two multiple-schedule compo-
nents is equal to the ratio of reinforcer rates.
The value of b has been found to be
approximately 0.5 in a number of studies that
arranged multiple VI VI schedules (Nevin,
2002) and will be used throughout this paper.
Equation 2, with reinforcement terms inserted
in lieu of behavioral mass m, describes the
highly reliable finding that resistance to
change relative to baseline is greater in
a multiple-schedule component with more
frequent reinforcement:1

1 The role of context in determining resistance to
change is not ideally clear. Nevin (1992a) found a strong
effect when context varied between conditions, and
context played a major role in several other studies
reviewed by Nevin (1992b). However, Nevin and Grace
(1999) found no effect when context varied within
sessions. A systematic replication of Nevin (1992a) by
Grace, McLean, and Nevin (2003) obtained mixed results.
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log
Bx

Bo
~

{x

rs=rað Þb
: ð2Þ

By expressing responding during disruption
relative to baseline, Equation 2 ignores the
determiners of steady-state responding. But
even in the steady state, responding is mea-
sured against a background that includes
potential disrupters such as competition from
unspecified activities that entail their own
unmeasured reinforcers. Herrnstein (1970)
formalized this idea in his well-known hyper-
bola relating steady-state response rate B and
reinforcer rate r :

B~
kr

rzre
, ð3Þ

where re represents unmeasured ‘‘extraneous’’
reinforcers, and k is the asymptotic response
rate as r goes to infinity.

Equation 2 can be rewritten to describe
response rate in the steady state as well as
during disruption, thus bringing behavioral
momentum theory to bear on baseline re-
sponse rates as well as their resistance to
change (see Nevin & Grace, 2005). Adding
a scale constant k9 to express predictions in
responses per minute, converting to natural
logarithms, and exponentiating, Equation 2
becomes:

B~k0 exp
{x

rs=rað Þb
: ð4Þ

The disrupter x in Equation 4 plays the same
role as extraneous reinforcers re in Equation 3
for steady-state response rate. Other param-
eters must be added to the numerator of
the exponent to characterize the effects of
short-term disrupters in tests of resistance to
change. Like k in Equation 3, k9 is the asymp-
totic response rate as rs /ra goes to infinity.

The steady-state predictions of Equations 3
and 4 for single VI schedules arranged over
successive conditions are strikingly similar. To
generate representative predictions from
Equation 3, we set k 5 100 and re 5 40. We
then estimated the parameters of Equation 4
that gave similar predictions, with ra set
arbitrarily at 1.0 because when reinforcer rate
is varied over successive conditions, the ‘‘com-
ponent’’ becomes the experimental session,
and the overall average reinforcer rate in-

cludes that during the subject’s extraexperi-
mental life, which presumably has a low and
constant value. With b 5 0.5, x 5 5.0, and k9 5
115, the predictions of Equation 4 are virtually
indistinguishable from those of Equation 3, as
shown in Figure 1 (if another value were
chosen for ra, the value of x would differ).
More generally, the extensive data that are
adequately fit by Equation 3 also will be
adequately fit by Equation 4.

A reliable finding of research on resistance
to change is that adding experimentally de-
fined extraneous reinforcers to one compo-
nent of a multiple schedule both decreases
response rate and increases resistance to
change in that component even if the
added reinforcers are qualitatively different
from those produced by responding (e.g.,
Grimes & Shull, 2001; Shahan & Burke,
2004). This general result is not well explained
by Equation 3 (see Nevin, Tota, Torquato, &
Shull, 1990), but follows from Equation 4.
Moreover, Herrnstein’s (1970) extension of
Equation 3 to describe multiple-schedule
performance made some predictions that have
proven erroneous. Because Equation 4 char-
acterizes resistance to change as well as steady-
state performance, we will employ it through-
out this paper.

In addition to describing rates of food-
reinforced operants, Equation 4 also describes
rates of observing responses that produce
contact with discriminative stimuli. Shahan
(2002) examined the effects of variations in
rate of primary reinforcement on observing-

Fig. 1. The relations between steady-state response rate
and reinforcer rate on VI schedules according to
Herrnstein (1970; Equation 3 here) and according to
a modified version of behavioral momentum theory
(Equation 4, with parameter values in the legend).
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response rates of rats. Observing responses
produced exposure to stimuli differentially
correlated with otherwise unsignaled periods
of response-independent sucrose deliveries or
extinction. The rate of sucrose deliveries was
varied across conditions. As shown in Figure 2,
his average data conform closely to the
predictions of Equation 4 with b equal to 0.5.

Relatedly, Shahan, Magee, & Dobberstein
(2003) examined the resistance to change of
observing behavior in pigeons. In their experi-
ments, unsignaled periods of food reinforce-
ment on a random-interval (RI) schedule
alternated with extinction in both components
of the multiple schedule. Observing responses
in both components produced stimuli corre-
lated with the RI and extinction periods. The
RI schedule in one component arranged food
deliveries at a rate four times higher than in
the other component. Observing occurred at
a higher rate and was more resistant to
prefeeding and intercomponent food deliver-
ies in the component in which it produced
discriminative stimuli associated with a higher
rate of primary reinforcement. A structural-
relation analysis of their data found that the
exponent b in Equation 4 was close to 0.5 for
both observing and food-key responding. Thus
observing—an overt analog of unmeasured
attending to discriminative stimuli—is func-
tionally similar to response rates and resistance
to change in single and multiple schedules of
food-maintained responding. For these rea-
sons, we use Equation 4 to predict the
probability of attending as a function of

reinforcer rate in the model of conditional
discrimination performance developed below.

THE DAVISON-NEVIN MODEL
OF CONDITIONAL

DISCRIMINATION PERFORMANCE

In a typical observing-response procedure,
responses produce stimuli that signal the
conditions of reinforcement for a single re-
sponse. In a conditional discrimination pro-
cedure such as matching to sample (MTS), by
contrast, reinforcers are given for one or the
other of two responses depending on the value
of a preceding stimulus. Specifically, one of
two sample stimuli is presented at the start of
each trial. After a fixed period of exposure, or
after completion of a response requirement,
two comparison stimuli are presented, one of
which is the same as the sample. A response to
the comparison that is the same as the sample
is deemed correct and may be reinforced. In
arbitrary or symbolic matching, the compar-
isons are physically different from the samples,
and reinforcement availability is determined
by a rule specifying the correct comparison for
each sample. In experiments characterized as
signal detection or recognition, responses are
usually defined topographically (e.g., pecks at
left or right key with pigeons; saying ‘‘Yes’’ or
‘‘No’’ with humans). The conditional-discrim-
ination paradigm encompasses both matching-
to-sample and signal detection, and our model
applies to both tasks.

For simplicity and consistency with previous
analyses, we will designate the samples as S1

and S2, with responses B1 and B2 defined by
the comparisons C1 and C2. Thus, in a standard
MTS procedure with pigeons, red or green
illumination of a center key will be designated
S1 or S2. Illumination of the side keys with red
and green, alternating irregularly between left
and right, will be designated C1 and C2, and
pecks on the keys displaying C1 and C2 will be
designated B1 and B2 regardless of their left or
right position.

In discrete-trial conditional discriminations,
it is convenient to array the stimuli (S1 and S2)
and responses (B1 and B2) in a 2 3 2 matrix as
shown in the upper panel of Figure 3. Cell
entries are subscripted by row–column nota-
tion and represent numbers of events. Thus,
for example, B11 and B22 are the numbers of
correct responses, and B12 and B21 are the

Fig. 2. The relation between the rate of observing by
rats (from Shahan, 2002) and the predictions of Equation
4. Parameter values are given in the legend, and VAC
indicates the proportion of variance explained.
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numbers of incorrect responses, each tallied
over a specified period of experimentation.
Likewise, R11 and R22 are the numbers of
reinforcers for correct responses, and R12 and
R21 are 0 (no experimentally arranged con-
sequences) in all cases considered here.
Following Alsop (1991) and Davison (1991),
Davison and Nevin (1999) assumed that the
effects of R11 and R22 generalized to the other
cells as a result of confusion between the
stimuli and contingencies within the matrix.
They identified confusability as the inverse of
distance in a two-dimensional psychometric
space, with its axes defined by stimulus-
behavior and behavior-reinforcer contingen-
cies. The distance between two discriminated
operants with different stimuli is given by dsb ,
which depends on the physical difference
between S1 and S2 and the sensory capacities
of the subject. The distance between operants
with different response definitions or contin-
gencies is given by dbr , which depends on the
physical difference between the definitions of
B1 and B2 and on variables such as unsignaled
delays to reinforcement that would alter the
discriminability of the behavior-reinforcer

contingency. Confusabilities are expressed as
the inverse of distances, 1/dsb and 1/dbr ; if
either parameter equals 1.0, discrimination
performance is at chance. The resulting matrix
of direct and generalized reinforcers is shown
in the bottom panel of Figure 3.

Davison and Nevin (1999) assumed that
responses were allocated to the cells of the
matrix in the top panel of Figure 3 so as to
match the ratios of the sums of direct and
generalized reinforcers, as shown in the lower
panel. The resulting expressions are cumber-
some and can be found in Davison and Nevin
(pp. 447–450), together with a more extensive
rationale for their approach. From these
expressions, Davison and Nevin calculated
the expected numbers of responses in each
cell of the matrix for various values of dsb , dbr ,
and R11/R22, and predicted the value of
discrimination accuracy defined as log D 5
0.5*log(B11/B21*B22/B12). Note that log D is
the log of the geometric mean of the predicted
ratios of correct to incorrect responses on S1

and S2 trials. It is defined identically to
a frequently used empirical measure of dis-
crimination accuracy, log d, which is calculated
from experimental data (see Davison & Tustin,
1978).

Although the Davison-Nevin (1999) model
was quite successful in accounting for a wide
range of results for conditional discrimina-
tions in discrete trials, it had three short-
comings—all of which were acknowledged—
that are addressed in this paper.

First, the model predicts that when the
R11/R22 ratio is varied with dsb constant,
the relations between log(B1/B2) and
log(R11/R22), plotted separately for S1 and
S2 trials, are curvilinear and converge as
log(R11/R22) becomes extreme. As a result,
the predicted relation between log D and
log(R11/R22) is concave down with a maximum
at log(R11/R22) 5 0. This function form has
rarely been reported in any of the many
relevant studies (e.g., McCarthy & Davison,
1980); indeed, a review by Johnstone and
Alsop (1999) found that many reported func-
tions were concave up, exactly the opposite of
the Davison-Nevin predictions.

Second, the model predicts that log D is the
same for all conditions with the same dsb , dbr ,
and R11/R22 ratio, regardless of the absolute
rates or values of R11 and R22. Thus it could
not explain the positive relation between

Fig. 3. The basic conditional-discrimination matrix for
two stimuli and two responses; cells are designated by row-
column notation as shown at the top, and cell entries
represent numbers of events. The lower panel presents the
matrix of effective reinforcers with R11 contingent on B11

and with R22 contingent on B22, generalizing to the other
cells according to the Davison-Nevin (1999) model.
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signaled reinforcer probability and accuracy of
signal detection reported by Nevin, Jenkins,
Whittaker, and Yarensky (1982, Experiment 2)
and systematically replicated with MTS in
multiple schedules by Nevin, Milo, Odum,
and Shahan (2003).

Third, although the Davison-Nevin (1999)
model could be extended to free-operant
multiple-schedule performance when S1 and
S2 durations are lengthened so that B1 and B2

can occur repeatedly, with B1 and B2 identical,
their model was cumbersome and laden with
free parameters (pp. 467–469). Moreover,
they did not attempt to model the well-
established finding that response rates in
multiple schedules are more resistant to
change in the richer component.

The mispredictions of steady-state discrimi-
nation performance result from an implicit
assumption in the Davison-Nevin (1999)
model—namely, that the subject always at-
tends to the stimuli, no matter how infrequent
the reinforcers. To address these shortcomings
in the Davison-Nevin model, we will use
Equation 4, derived from behavioral momen-
tum theory, to predict the probability of
attending to the stimuli in discrete-trial condi-
tional discriminations as well as response rates
and their resistance to change, which are well
described by Equation 4.

A MODEL OF ATTENDING

In this section, we outline a model of
attending to the sample and comparison
stimuli in a conditional discrimination. The
model has two components: a structure that is
independent of reinforcement effects, and
a momentum-based model of attending in
relation to reinforcement.

Model Structure

In a standard MTS trial with pigeons as
subjects, the sample S1 or S2 is presented on
a center key followed by comparisons C1 and
C2, which define choice responses B1 or B2, on
the side keys. We assume that on each trial the
subject attends to the sample with probability
p(As), and then attends to the comparisons
with probability p(Ac). We assume further that
p(As) is the same for S1 and S2, whichever is
presented on a given trial, and that p(Ac) is the
same for C1 and C2. The process may be
represented as a Markov chain as shown in

Figure 4. If the subject attends to the sample
and comparisons, it emits B1 or B2 as predicted
by Davison and Nevin (1999; see bottom panel
of Figure 3). The formulas for probabilities of
B1|S1 and B1|S2 are given in Figure 4, State 1. If
the subject does not attend to the samples, S1

and S2 are ignored (or completely confused),
so that dsb in the model is 1.0. If it then attends
to the comparisons, the probabilities of B1|S1

and B1|S2 are determined by R11/R22 as
modulated by dbr only (State 3 in Figure 4).
Note that if R11 5 R22, the expressions for
State 3 reduce to 0.5. If the subject does not
attend to the comparisons, C1 and C2 are
ignored, dbr is 1.0, and the expressions in
Figure 4, States 2 and 4, reduce to 0.5.
Consequently, responses are directed random-
ly to the left or right keys with probability 0.5
regardless of whether the subject attended to
the sample or not (for present purposes, we
will neglect inherent side-key biases).

The overall performance resulting from
a mixture of trials with and without attending
to sample and comparison stimuli is predicted
by pooling the response probabilities for trials
in each of the four states summarized in
Figure 4 weighted by p(As), p(Ac), 1-p(As),
and 1-p(Ac). The basic idea is the same as
Heinemann and Avin’s (1973) quantification
of attending during the acquisition of a condi-
tional discrimination (see also Blough, 1996).
Our analysis of attending in relation to re-
inforcer probabilities in multiple schedules
(see below) implies that attending, like overt
operant behavior, can be controlled by envi-
ronmental stimuli such as the key colors
signaling schedule components. As such,
our account is consistent with the work of
Heinemann, Chase, and Mandell (1968), who
demonstrated control of attending to one or
the other of two stimulus dimensions by
differential reinforcement with respect to
those dimensions.

The discriminability parameters dsb and dbr

and the attending probabilities p(As) and
p(Ac) have somewhat similar functions in the
proposed model. For example, setting dsb 5
1.0 has the same effect as setting p(As) 5 0.
Likewise, setting dbr 5 1.0 has the same effect
as setting p(Ac) 5 0. However, there are some
important differences between them. As noted
above, Davison and Nevin (1999) conceptual-
ized dsb and dbr as distances in a psychometric
space within which various discriminated
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Fig. 4. Schematic model of attending in a conditional discrimination. The subject attends to the sample with p(As). If
it attends, the discriminability of stimulus–behavior relations is dsb in the Davison-Nevin (1999) model; if it does not
attend, dsb 5 1. It then attends to the comparisons with p(Ac). If it attends, the discriminability of behavior–reinforcer
relations is dbr in the Davison-Nevin model; if it does not attend, dbr 5 1. Combining these possibilities leads to four states;
for each state, the Davison-Nevin expressions for the probabilities of B1|S1 and B1|S2 (see Figure 3) are given in the lower
portion of the figure.
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operants could be arrayed. Thus their values
reflect long-term structural features of the
experiment such as the sensory capacities of
the subject, the physical differences between S1

and S2 and between C1 and C2, and the
distinctiveness of the contingency between B1

and B2 (which are defined by C1 and C2) and
the reinforcers R11 and R22. By contrast,
attending occurs probabilistically from trial
to trial, where p(As) and p(Ac) depend on
reinforcer rates in the same way as free-
operant response rates. The independence of
attending and discriminability as model param-
eters suggests that a subject could attend with
high probability (because of frequent re-
inforcement) to stimuli that were difficult to
distinguish (low dsb or dbr), or conversely, at-
tend with low probability (because of infre-
quent reinforcement) to stimuli that were
highly discriminable.

Effects of Overall Reinforcer Rate

We assume that unmeasured attending is
related to the rate of reinforcement correlated
with a stimulus relative to its context in the
same way as food-reinforced free-operant
responding or overt observing behavior that
produces discriminative stimuli. Thus attend-
ing to the samples and comparisons would be
more probable and more resistant to change
in the presence of stimuli correlated with
higher rates of reinforcement.

We propose that attending to S1 and S2 in
a conditional discrimination is given by the
following version of Equation 4:

p Asð Þ~ exp
{x

rs=rað Þb
, ð5Þ

where x is background disruption or distrac-
tion that interferes with attending to the
sample. The reinforcer rate in a schedule
component rs is here identified with the
reinforcer rate for observing or attending
behavior preceding and during sample pre-
sentation. Thus rs is given by reinforcers per
session divided by total time from onset of
intertrial intervals or multiple-schedule com-
ponents to offset of the samples. The session
average reinforcer rate ra is defined as
above for Equation 4. No scalar analogous to
k9 in Equation 4 is needed because the
asymptote of p(As) is 1.0. Equation 5 states
that attending in a schedule component is

positively related to component reinforcer rate
rs relative to the overall average session re-
inforcer rate ra. Therefore, p(As) is predicted
to be higher and more resistant to change in
the richer of two multiple-schedule compo-
nents with a given increase in disruption, just
like response rate. We also assume that
attending to C1 and C2 is similarly dependent
on reinforcer rate relative to its context.
However, for p(Ac), the relevant reinforcer
rate is that obtained within the MTS trial after
sample offset, designated rc , and the context is
the schedule component within which the trial
occurs. Thus

p Acð Þ~ exp
{z

rc=rsð Þb
, ð6Þ

where z represents background disruption of
attending to C1 and C2, which may or may not
be the same as x, the background disruption of
attending to the samples. In standard MTS
trials, the reinforcer rate rc is given by the
reciprocal of the mean latencies of B1 and B2.
When a retention interval intervenes between
samples and comparisons, rc is given by the
reciprocal of the sum of the retention interval
and the mean latencies of B1 and B2. Because
latencies of responding to the comparison
stimuli are rarely reported, we assume 1-s
latencies throughout. The model parameters
and related terms are summarized in Appen-
dix A.

Predicted Effects of Differential Reinforcement

The predictions that follow from variations
in p(As) within the Markov structure of Figure 4
are illustrated in the following section. These
illustrative predictions assume that the ratio of
reinforcers for the two sorts of correct
responses, R11/R22, is varied systematically with
total reinforcement, R11 + R22, held constant.
The constancy of R11 + R22 implies constancy
of p(As) and p(Ac) while the ratio of re-
inforcers, R11/R22, is varied. Therefore, Equa-
tions 5 and 6 are irrelevant and we can ignore
the parameters b, x, and z. Because p(Ac) is
likely to be close to 1.0 in detection or MTS
experiments with frequent reinforcement
and no retention interval separating samples
and comparisons, we concentrate on the
predicted effects of p(As) , 1.0, correspond-
ing to values of x . 0 in Equation 5, with p(Ac)
5 1.0.
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Davison and Tustin (1978) suggested that
when the difference between S1 and S2 is
constant, with the reinforcer ratio R11/R22

varied, the ratios of B1 to B2 on S1 and S2 trials
could be described by the generalized match-
ing law. In logarithmic form, neglecting in-
herent bias:

On S1 trials, log
B11

B12
~a log

R11

R22
zlog d, and ð7aÞ

on S2 trials, log
B21

B22
~a log

R11

R22
{ log d, ð7bÞ

where a represents sensitivity to reinforcement
ratios and logd provides an empirical measure
of discrimination between S1 and S2 (see
above). Many data sets conform reasonably
well to the predicted linear relation between
log response and reinforcer ratios. However,
the equations of Davison and Nevin (1999)
predict functions for S1 and S2 that are curved,
becoming horizontal at high and low reinforc-
er ratios, respectively.

The empirical measure of discrimination
accuracy, log d, is obtained by subtracting
Equation 7b from Equation 7a (we use
logarithms to the base 10 here and for the
applications below):

log d~0:5 log
B11

B12
{ log

B21

B22

� �
: ð8Þ

Equation 8 implies that measured discrimina-
tion, log d, is independent of the rein-
forcer ratio, and a number of studies have
reported rough constancy of log d when the
reinforcer ratio is varied. By contrast, the
Davison-Nevin equations predict that log D is
an inverted-U function of the log reinforcer
ratio. As noted above, such functions are rarely
reported.

Interestingly, when the ratio of reinforcers
for the two correct responses, R11/R22, is
varied with total reinforcement, R11 + R22,
constant, the model summarized in Figure 4
can generate a range of function forms for
response ratios and log D, as shown in Figure 5.
The filled symbols in the top left panel show
the Davison-Nevin (1999) predictions with
both p(As) and p(Ac) set at 1.0, with R11/R22

varied over a wide range. If p(As) is reduced to
.7 (unfilled symbols), the functions become
more nearly linear, with some wiggles that
would be difficult to detect in real data. In the

top right panel, the corresponding functions
for log D show the strong inverted-U form
predicted by Davison and Nevin when p(As) 5
1.0 (filled symbols), and a more nearly
horizontal gull-wing form when p(As) 5 .7
(unfilled symbols). The bottom left panel
shows the effects of different values of dsb with
dbr fixed at 100 and p(As) 5 .7. If dsb 5 1000
(an extremely easy discrimination, filled sym-
bols), the functions are nonlinear with two
clear inflections. If dsb 5 10 (a moderately
difficult discrimination, unfilled symbols) the
functions are essentially linear over the range
from 21.5 to +1.5 log units on R11/R22. (The
function for dsb 5 100, p(As) 5 .7 in the top
panel is an intermediate version.) The corre-
sponding functions for log D in the bottom
right panel are U-shaped for dsb 5 1000 (filled
symbols) and roughly horizontal for dsb 5 10
(unfilled symbols) over the same range. Thus
the relation between log D and log R11/R22 can
take on a variety of forms, depending on the
values of dsb and p(As). Because most signal-
detection research has arranged moderately
difficult discriminations and a restricted range
of R11/R22, the absence of clear curvilinearity
in the response-ratio functions and the appar-
ent independence of measured discrimina-
tion, log d, from the reinforcer ratio are not
surprising.

It is important to note that although
variations in dsb and p(As) lead to clearly
distinguishable predictions, the same is not
true for dbr and p(Ac). For example, with p(As)
5 1.0, predictions for dbr 5 100, p(Ac) 5 .8, are
indistinguishable from those for dbr 5 8, p(Ac)
5 1.0. However, it is possible to distinguish
their effects empirically. Because we have
identified dbr with the discriminability of the
response-reinforcer contingency, the model
predicts that the estimated value of dbr

should be positively related to the physical
difference between C1 and C2. By contrast,
p(Ac) depends on the within-trial reinforcer
rate, so its estimated value should be constant
with respect to the difference between C1 and
C2. We show below that when Jones (2003)
varied the difference between C1 and C2 in
MTS, with R11/R22 varied over a wide range
and R11 + R22 constant, his data accord
with these expectations. Conversely, in delayed
matching to sample, dbr should be constant
and p(Ac) should decrease as rc decreases
with the length of the retention interval. A
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model and analysis of delayed discrimina-
tion by Nevin, Davison, Odum, and Shahan
(in preparation) will address these expecta-
tions.2

APPLICATIONS: DIFFERENTIAL
REINFORCEMENT

We now apply the model of attending
summarized above to three studies that ar-
ranged differential reinforcement for the two
correct responses, B11 and B22, in conditional
discriminations while holding reinforcer totals
constant. First, Jones (2003) varied the re-
inforcer ratio over a wide range with two levels
of discriminability between the comparisons

2 A preliminary version entitled ‘‘Reinforcement, attend-
ing, and remembering’’ was presented at the meeting of
the California Association for Behavior Analysis, February
2005.

Fig. 5. The left column displays predicted functions relating log ratios of responses, B1/B2, to the log ratio of
reinforcers for correct responses, R11/R22, separately for S1 and S2 trials. The upper panel shows the effects of two values
of p(As) with dsb 5 dbr 5 100. The lower panel shows the effects of two values of dsb with dbr and p(As) constant. The right
column displays predicted relations between log D, which is given by the difference between the corresponding functions
in the left column, and the log reinforcer ratio. p(Ac) is set at 1.0 for all predictions. See text for further description.
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C1 and C2. Second, Alsop (1988) varied the
reinforcer ratio over three values with five
levels of discriminability between samples S1

and S2. Third, Nevin, Cate, and Alsop (1993)
varied the reinforcer ratio over five values with
two levels of discriminability between samples
S1 and S2 and between responses, B11 and B22.
Taken together, these studies test the ability of
the present model to account for data that are
not entirely consistent with Davison and
Nevin’s (1999) model, which in effect assumed
that p(As) and p(Ac) were always 1.0.

Jones (2003) reported a comprehensive set
of MTS data with R11 + R22 constant and
R11/R22 varied over an unusually wide range
and with unusually extensive exposure to each
condition. The sample and comparison stimuli
differed in brightness. In Part 1 of his
experiment, the differences between both S1

and S2 and C1 and C2 were large; in Part 2,
the difference between C1 and C2 was re-
duced. The functions relating log(B1/B2) to
log(R11/R22) for S1 and S2 trials were curvilin-
ear and were not well described by the basic
Davison-Nevin (1999) model (see Jones, 2003,
Figure 5). However, predictions of the present
model fitted the data quite well, as shown in
Figure 6. Because the overall reinforcer rate
was the same in all conditions of both parts,
Equations 5 and 6 are not relevant, so we fitted
p(As) and p(Ac) directly for the entire data set.
We estimated dbr separately for Parts 1 and 2
(designated dbr1 and dbr2) because the compar-
ison stimuli differed between parts, with dsb the
same for both parts because the S1-S2 differ-
ence was the same. There were 40 indepen-
dent data points fitted by five parameters: dsb ,
dbr1, dbr2, p(As), and p(Ac); their values are
given in the panels of Figure 6. The overall
proportion of variance explained by the model
(VAC) is .98. The best-fitting value of dsb was
500, but varying dsb over the range from 100 to
1000 decreased VAC by less than .02. The
reason for the relatively poor estimation of dsb

is that high values correspond to very low error
rates. For example, dsb 5 100 corresponds to
one error in 100 trials, whereas dsb 5 1000
corresponds to one error in 1000 trials. For
this reason, the value of dsb accounts for rather
little of the data variance in easy discrimina-
tions.

The best-fitting values of dbr1 and dbr2 were
200 and 13. The lower value of dbr for the data
of Part 2 reflects the reduced discriminability

of the comparisons when the difference
between C1 and C2 was decreased. When dbr1

and dbr2 were varied independently, dbr1 could
vary from 50 to 1000, and dbr2 could vary from
5 to 20, with no more than .02 loss in VAC.
Thus, although dbr1 and dbr2 were not tightly
estimated, the data were best fitted with dbr1

greater than dbr2, whereas p(Ac) was con-
strained to take the same value for both parts
because the conditions of reinforcement were
the same. These results are consistent with the

Fig. 6. Fits of predictions by the model to the data of
Jones (2003), Part 1 (upper panel) and Part 2 (lower
panel). Parameter values are shown in the legend for each
panel; overall VAC 5 .98. See text for explanation.
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separate determination of dbr and p(Ac) by the
response-defining stimuli and by reinforce-
ment variables.

In one condition of Part 2, Jones (2003)
arranged extinction for B1 on S1 trials and
continuous reinforcement for B2 on S2 trials.
Thus the ratio of R11 to R22 was zero, and
the data cannot be plotted in Figure 6. Never-
theless, the data are interesting and challenging
as an extreme case. According to the model of
attending shown in Figure 4, p(B1|S1) and
p(B1|S2), and therefore log(B1|S1/B2|S1) and
log(B1|S2/B2|S2), must be the same whenever
R11 or R22 is zero. That is, discrimination
between S1 and S2 is predicted to be zero. To
the contrary, Jones obtained average values of
20.04 and 20.80 for log(B11/B21) and
log(B12/B22), respectively, implying fairly
good discrimination (log d 5 0.38).

To interpret his results, Jones (2003) con-
strued trials with C1 on the left and C2 on the
right, and trials with C1 on the right and C2

on the left, as different configurations, thus
defining eight discriminated operants main-
tained by different relative frequencies of
reinforcement. His data for the condition with

extinction versus continuous reinforcement, as
well as his other data, were explained by this
approach. As shown in Figure 6, our attention-
based model accounts for all his other data
quite well without invoking different config-
urations of C1 and C2. Furthermore, our model
can accommodate the effects of extinction on
S1 trials by adding a small value to all cells of
the reinforcement matrix of Figure 1, based
on the fact that all responses have the effect of
advancing the trial sequence and thereby lead
to delayed reinforcement. Doing so would
introduce another free parameter into the
model, and we forego this added complexity
for the present.

A second data set was provided by Alsop
(1988), who varied the physical difference
between S1 and S2 (rather than between C1 and
C2, as in Jones, 2003) over five conditions in
a signal-detection procedure where B1 and B2

were defined by their location. Differences
between S1 and S2 were defined ordinally,
including a condition with no difference, with
reinforcer ratios R11/R22 arranged at 9:1, 1:1,
and 1:9 in each condition. The left panel of
Figure 7 presents Alsop’s (1988) mean data,

Fig. 7. The left panel displays the relation between log d and log(R11/R22) with the difference between S1 and S2

varied over five conditions, including zero difference, from Alsop (1988). The functions are identified by the ordinal
difference between S1 and S2. The right panel displays predicted relations between log D and log (R11/R22) for different
values of dsb , shown with each function; other parameter values are given in the legend. Overall VAC 5 .96. See text for
explanation.
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showing that the shape of the function relating
log d to R11/R22 depended on the level of
discrimination between S1 and S2. The right
panel of Figure 7 shows our model’s predic-
tions with different values of dsb for each
function, but with dbr , p(As), and p(Ac) the
same for all five functions. Thus predicted log
D values were derived from eight free param-
eters estimated from 30 response ratios, with
overall VAC 5 .96. The predicted functions are
concave up at high levels of discrimination and
nearly horizontal at intermediate and low
levels, corresponding to the trends in Alsop’s
data. With p(As) , 1.0, our model captures the
main effects in Alsop’s data with the smallest
possible number of free parameters. However,
the asymmetries in the data cannot be
explained by our model without additional
(and ad hoc) parameters.

A third data set was provided by Nevin et al.
(1993), who varied the differences between
samples S1 and S2 and between responses B1

and B2 in a factorial design. S1 and S2 were
defined as brighter or dimmer lights on one
key, and B1 and B2 were defined as shorter or
longer response latencies on a second key.
Over four sets of conditions, the difference
between S1 and S2 luminances was either large
(0.066 log units) or small (0.032 log units),
and the difference between B1 and B2 latencies
was either large (0 to 1 s vs . 2 s) or small (1 to
2 s vs. 2 to 3 s). Within each set of conditions,
the reinforcer ratio R11/R22 was varied system-
atically over five values with two replications
for R11 5 R22, giving 56 data points in all. Total
reinforcement, R11 + R22, was constant across
all conditions. The data are shown in Figure 8
together with model predictions and param-
eter values. Measured discrimination (log d;
the separation between response-ratio func-
tions for S1 and S2) was directly related to the
differences between S1 and S2 and between B1

and B2. The sensitivity of response ratios to
reinforcer ratios (the slope of the response-
ratio functions; a in Equations 7a and 7b) was
directly related to the difference between B1

and B2, but inversely related to the difference
between S1 and S2.

This complex pattern of results is predicted
by our model with two values of dsb , two values
of dbr , p(As) 5 .97, and p(Ac) 5 .99. The overall
VAC is 0.92; if dsb and dbr were allowed to take
different values for each set of conditions, VAC
improves by less than 0.01. The data generally

fall above the predictions, suggesting a bias
toward the shorter-latency response that was
most pronounced when the difference be-
tween B1 and B2 was small. The model cannot
account for inherent biases of this sort without
introducing an additional parameter that
would take different values across sets of
conditions. Also, the predicted functions for
small differences between S1 and S2 and B1 and
B2 (lower right panel) are curved, whereas the
data are linear. The major result, though, is
that the main effects of the differences
between S1 and S2 and between B1 and B2

were well predicted with dsb independent of
the difference between B1 and B2 and with dbr

independent of the difference between S1 and
S2. When Nevin et al. (1993) fitted their data
with an earlier version of the Davison-Nevin
(1999) model proposed by Alsop (1991) and
Davison (1991), they found that dbr depended
on the difference between S1 and S2, and
that the differences between S1 and S2 and
between B1 and B2 interacted in determining
dsb . The present model, with probabilities of
attending slightly less than 1.0, remedies these
difficulties.

In summary, when reinforcer totals are
constant and reinforcer ratios are varied, the
model correctly predicts the forms of func-
tions relating log response ratios or log d to log
reinforcer ratios when the differences between
the sample stimuli and the comparison stimuli
or responses are varied separately in condi-
tional discriminations. Moreover, it does so
with a minimum of parameters, and the values
of discriminability parameters dsb and dbr

correspond at least ordinally with empirical
variables. More important, dsb remains con-
stant when the comparison stimuli or re-
sponses are varied, and dbr remains constant
when the samples are varied. We turn now to
the effects of varying total reinforcement on
the probabilities of attending to the samples
and comparisons, which were constant within
the experiments analyzed above.

APPLICATION: MULTIPLE SCHEDULES
OF REINFORCEMENT FOR

CORRECT RESPONSES

As noted above, the original Davison-Nevin
(1999) model predicted that variations in total
reinforcement, R11 + R22, would have no effect
on accuracy of conditional discrimination
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performance, and did not consider the effects
of total reinforcement on its resistance to
change. However, Nevin et al. (2003) found
that both steady-state accuracy and its resis-
tance to change depended on total reinforce-
ment in much the same way as response rate in
multiple schedules where R11 + R22 varied
between components.

In a variation of a paradigm introduced by
Schaal, Odum, and Shahan (2000), Nevin
et al. (2003) arranged equal VI 30-s schedules
in two multiple-schedule components, where
responding produced MTS trials with vertical
and slanted lines as the samples (S1, S2) and
comparisons (C1, C2). Reinforcer probabilities
for correct matches were .8 in one component

Fig. 8. Fits of predictions of the model to the data of Nevin et al. (1993). The panels display data and predictions for
sets of conditions with large or small differences between S1 and S2 and between B1 and B2. Parameter values are given in
each panel; overall VAC 5 .92. See text for explanation.
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(designated rich) and .2 in the other (desig-
nated lean). After stable response rates and
accuracies were established, performance was
disrupted by prefeeding, by presenting food
during intercomponent (ICI) intervals, or by
inserting a 3-s retention interval before onset
of C1 and C2, each for five sessions. Baseline
performances were reestablished after each
disruption. Finally, food reinforcement was
discontinued for 10 sessions of extinction.
Nevin et al. found that response rates and
discrimination accuracies (measured as log d)
usually were higher in baseline and were more
resistant to all four disrupters in the richer
component. They concluded that the strength
of discriminating, like the strength of free-

operant responding, was positively related to
reinforcer rate. Here, we show that these
reinforcement effects on discrimination accu-
racy follow directly from our model.

A summary of the average data from Nevin
et al. (2003) is shown in Figure 9. The
response-rate data are consistent with standard
multiple-schedule results in that baseline re-
sponse rates were higher and decreased less
under disruption, relative to baseline, in the
rich component. The discrimination data
suggest that accuracy was similarly related to
component reinforcer rates. Specifically, log
d was higher and decreased less, relative to
baseline, in the rich component, and the
decreases were similar to those observed for

Fig. 9. A summary of the average data of Nevin et al. (2003). The upper left panel shows response rates and the lower
left panel shows discrimination accuracies, measured as log d, in baseline and during disruption by prefeeding (PF), ICI
food presentations at random times (RT), the abrupt introduction of a 3-s retention interval between sample and
comparison stimuli (Del), and the termination of reinforcement (Ext, in two 5-session blocks), separately for rich
(shaded bars) and lean (open bars) components. The corresponding right panels show average levels of performance
during disruption expressed as proportions of the immediately preceding baseline.
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response rate during prefeeding, intercompo-
nent food, and extinction. However, when
performance was disrupted by inserting a 3-s
retention interval, response rates were relative-
ly unaffected whereas log d decreased to near-
chance levels.

We begin by showing that Equation 4, with
the numerator of the exponent modified by
adding terms corresponding to the addition of
the various disrupters, describes the average
multiple-schedule VI response rates of Nevin
et al. (2003). Equation 4 is repeated here as
Equation 9 with added terms representing the
four disruptive operations:

B~k 0 exp
{ xzf zvzqzczdrð Þ

rs=rað Þb
, ð9Þ

where k9, b, x, rs, and ra are defined as above; f
represents the additional disruptive effect of
prefeeding; v represents the additional effect
of ICI food; q represents the additional effect
of the retention interval; and c and d represent

the additional effects of discontinuing the
contingency and changing the reinforcer rate
from rs to zero during extinction (see Nevin,
McLean, & Grace, 2001; Nevin & Grace, 2005).
We used a nonlinear curve-fitting program
(Microsoft Excel Solver) to estimate values of
the parameters, with rs and ra based on
programmed reinforcer rates. The results are
shown in Figure 10, left panel, and the fitted
parameter values are given in Table 1, with the
exponent b fixed at 0.50. Because there were
seven free parameters and 18 data points, an
excellent fit is hardly surprising.

As described above, we assume that the
effects of reinforcement on attending to S1

and S2 are quantitatively similar to effects on
response rate in the data of Nevin et al. (2003),
and rewrite Equation 4 for p(As) with terms
added as in Equation 5:

p Asð Þ~ exp
{ xzf zvzqzczdrð Þ

rs=rað Þb
: ð10Þ

Fig. 10. The left panel shows the agreement between obtained response rates displayed in Figure 9 and those
predicted by Equation 9 with parameter values given in Table 1. The right panel shows the agreement between log
d values displayed in Figure 9 and those predicted by Equations 10 and 11 with parameter values given in Table 1 (filled
diamonds). The unfilled diamonds represent log d during introduction of a 3-s retention interval.

Table 1

Parameter values for model fits to the data of Nevin et al. (2003). Response rates were fitted by
Equation 4, and log d was fitted by Equations 10 and 11 with dsb 5 dbr 5 150, b 5 0.5.

k9 x z f v q c d VAC

Responses per
minute

109 0.33 — 0.40 0.34 0.12 0.15 0.001 .96

Log d — 0.08 0.00 0.18 0.05 1.41 0.05 0.000 .81
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Likewise, for attending to C1 and C2, we rewrite
Equation 6 with the same added terms:

p Acð Þ~ exp
{ zzf zvzqzczdrð Þ

rc=rsð Þb
: ð11Þ

In the procedure of Nevin et al. (2003), rc/rs

is the same in both rich and lean components
because reinforcers occur four times more
frequently within MTS trials, just as within
the components themselves, so p(Ac) must be
the same. Moreover, because within-trial laten-
cies are short relative to the average time
between trial presentations, rc/rs is high and
p(Ac) should approximate 1.0. Therefore,
States 2 and 4 of Figure 4 will rarely if
ever be entered, and variations in the data
will depend primarily on variations in p(As)
except when retention intervals are used as
disrupters.

We fitted Equations 10 and 11 to the
accuracy data of Nevin et al. (2003) by
determining the parameter values that mini-
mized the sum of squared differences between
predicted log D and obtained log d. The
calculations for predicting log D are summa-
rized in Appendix B; the full worksheet for
estimating parameter values is available on the
JEAB website. As noted above, it is necessary to
assume or to fit dsb and dbr in order to calculate
predicted log D. In a study of symbolic
matching to sample, Godfrey and Davison
(1998) found that varying the difference
between S1 and S2 did not affect dbr , and that
varying the difference between C1 and C2 did
not affect dsb (see also the analysis of Nevin
et al., 1993, above). Moreover, they found that
when the difference between S1 and S2 was the
same as the difference between C1 and C2, dsb

was equal to dbr . Accordingly, we will assume
that dsb 5 dbr here and in another MTS study
below. With dsb 5 dbr 5 150, predicted log D
approximated the maximum average value of
log d in the baseline data, so this value was
used in fitting the full data set.

The results are shown in the right panel of
Figure 10. Note that the unfilled diamonds,
which represent the disruptive effects of
inserting a 3-s retention interval between
sample and comparison stimuli, are well
explained by the decrease in rc that necessarily
follows when a nonzero retention interval is
introduced; a fully developed model of de-
layed discriminations is in preparation.

The best-fitting parameters are given in
Table 1; the value of z was 0.0, so that p(Ac)
in baseline was 1.0 as suggested above. The
value of dsb 5 dbr has relatively little impact on
the quality of the fit: Values ranging from 100
to 1000 altered VAC by less than .02 for
reasons noted above. Clearly, the fit is less
satisfactory than for response rate, but exam-
ination of Figures 9 and 10 suggests that much
of the data variance arises from variations in
log d between successive baseline determina-
tions, displayed in the roughly vertical clusters
of data points in Figure 10. Most importantly,
our model of attending captures the major
ordinal results of Nevin et al. that were prob-
lematic for the Davison-Nevin (1999) model:
Accuracy of discrimination, like response rate,
is higher and more resistant to change in the
richer component.

APPLICATION: FIXED-RATIO
REINFORCEMENT FOR

CONDITIONAL DISCRIMINATIONS

Another finding that raises problems for the
Davison-Nevin (1999) model is the progressive
increase in accuracy within a series of trials
between reinforcers that are contingent on
a fixed number of correct responses in
successive (but not necessarily consecutive)
trials. The result holds for MTS (Mintz,
Mourer, & Weinberg, 1966; Nevin, Cumming,
& Berryman, 1963) and for signal detection
(Nevin & MacWilliams, 1983). It is problematic
because, as noted above, the Davison-Nevin
model predicts that if dsb and dbr are constant,
then variations in overall reinforcer rate or
probability between conditions, between com-
ponents, or within trial sequences have no
effect on accuracy. Although it might be
argued that the delay to reinforcement for
responses early in the fixed ratio would
degrade dbr , the discriminability of response-
reinforcer relations, it would then be necessary
to assume that dbr itself comes under the
control of the number of trials elapsing since
reinforcement. It is at least equally reasonable
to assume that attending, like overt respond-
ing, depends on delay to reinforcement. Here
we show that if successive trials are treated
analogously to multiple-schedule components
in the paradigm of Nevin et al. (2003), with
reinforcer rate in each successive trial given by
the reciprocal of delay to reinforcement, the
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progressive increase in accuracy within a
fixed ratio follows directly from our model.
The assumption of correspondence between
schedule components and successive trials is
supported by the work of Mintz et al., who
provided exteroceptive cues corresponding
to postreinforcer trial number, demonstrated
that the cues controlled accuracy, and ob-
tained results similar to those of Nevin et al.
(1963).

Nevin et al. (1963) required five key pecks at
the center-key sample, following which the
comparisons were presented on the side keys
while the sample remained lighted. A 1-s
intertrial interval separated successive trials.
Reinforcement followed 10 (not necessarily
consecutive) trials with correct responses. In
a separate condition, all correct responses
were reinforced (FR 1). To determine p(As)
and p(Ac), we used Equations 5 and 6 with ra as
the overall average reinforcer rate in a session
and rsi as the reinforcer rate (reciprocal of the
sum of intertrial time plus cumulative time to
complete five sample-key pecks from the ith
trial to reinforcement, as reported by the
authors) in the ith trial after a previous
reinforcer. The within-trial reinforcer rate rci

was taken as the reciprocal of cumulative
latencies from the ith trial to reinforcement,
assuming 1-s latencies to the comparisons. As
a result, both rs/ra and rc/rs increase system-
atically as the ratio advances. Then, with dsb 5
dbr 5 400 (chosen to approximate the data
with FR 1) and with b 5 0.5, the model
accounted for 91% of the data variance. Again,
the values of dsb and dbr had little effect on the
quality of the fit: With dsb 5 dbr ranging from
100 to 4000, VAC was altered by less than .01
for the reasons described above. The predicted
function agrees reasonably well with the
average data, as shown in Figure 11. The
model parameters are also shown in Figure 11.
According to the model, the fact that x 5
0 implies that p(As) 5 1.0 (i.e., the subjects
attended to the samples on every trial) so the
entire effect arises from variations in attending
to the comparisons, p(Ac).

In summary, the Davison-Nevin (1999)
model in conjunction with a model of
attending to sample and comparison stimuli
(Figure 4) explains the effects of differential
reinforcement for the two correct responses
on response-ratio functions and on measured
discrimination when total reinforcement is

constant across conditions. It also accounts
for the effects of varying the discriminability of
the samples or comparisons. When the prob-
ability of attending is assumed to depend on
variations in reinforcement in accordance with
Equations 5 and 6, derived from behavioral
momentum theory, the model also explains
the positive relation between baseline accuracy
and resistance to change and total reinforce-
ment in multiple schedules. It also accounts
for the progressive increase in accuracy under
fixed-ratio reinforcement of conditional-dis-
crimination performance.

GENERAL DISCUSSION

Our model has at least two levels: its core
assumptions, and their instantiation in a model
that generates predictions for comparison with
empirical data sets. The core assumptions that
were set forth in the Introduction are repeated
here.

Core Assumptions

First, the measured rate of an overt free
operant, both in the steady state and during
disruption, depends on reinforcer rate relative
to the context according to a function
(Equation 4) derived from Nevin’s (1992b)
formulation of behavioral momentum. This
extension of behavioral momentum theory to

Fig. 11. Proportion of correct responses over nine
consecutive unreinforced trials when reinforcement is
available for the 10th trial with a correct response. Data are
averages from Nevin et al. (1963); the predicted function is
given by Equations 5 and 6 with parameter values shown in
the figure. See text for explanation.
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steady-state response rate is supported by the
similarity of the predictions of Equation 4 to
those of Herrnstein’s (1970) widely accepted
formulation of steady-state response rate
(Equation 3). In addition, Equation 4 was
derived from Equation 2, which describes
a great deal of the data on resistance to
change, and several studies of resistance to
change support Equation 4 over Equation 3.

Second, in a conditional discrimination,
unmeasured probabilities of attending to the
sample and comparison stimuli depend on
reinforcement correlated with those stimuli
relative to the context within which they
appear according to the same function as for
overt responding, both in the steady state and
during disruption, with independent param-
eters characterizing disrupters of attending
to the samples and comparisons. This assump-
tion cannot be supported directly because
attending is measurable only by inference
from a model. However, indirect support
comes from research on observing behavior,
which is widely construed as an overt, measur-
able expression of attending and which was
related to reinforcement and disruption in the
same way as suggested by Equation 4 (Shahan,
2002; Shahan et al., 2003).

Third, given that a subject attends to the
relevant stimuli, its behavior is described by
the Davison-Nevin (1999) model of conditional-
discrimination performance. This assumption
is supported by the various lines of evidence
marshaled by Davison and Nevin (1999).

From Assumptions to Predictions

The probabilities of attending to the sam-
ples and comparisons, p(As) and p(Ac), are
determined by Equations 5 and 6 with param-
eters x and z representing the disruptive effects
of unspecified but constant background fac-
tors such as competition from extraneous
activities and their reinforcers. Additional
parameters are needed to represent the effects
of added, experimentally defined disrupters.
All disrupter values are free parameters with
values constrained to be greater than or equal
to 0.

The relevant reinforcer rate for attending to
the samples, rs , is calculated over the time
before sample presentation, when a subject
may engage in observing behavior or unmea-
sured attending that is reinforced by sample
onset, plus the time when the sample is

present. The session average reinforcer rate,
ra , is calculated over an entire session exclud-
ing reinforcer durations.

To estimate the probability of attending to
the comparisons, we have used the within-trial
reinforcer rate, rc , based on time from offset of
the sample to reinforcement (or time out if
the response is not reinforced), with the
reinforcer rate for the samples, rs , as the
context. In calculating within-trial reinforcer
rates, we assumed 1-s latencies to the compar-
isons in order to avoid infinite reinforcer rates
in trials with zero retention intervals. We also
assumed 1-s latencies in application to the data
of Nevin et al. (2003) when a retention interval
was introduced as a disrupter.

We have assumed that the parameters
representing the effects of background dis-
rupters can take different values for attending
to the samples (x) and comparisons (z). When
overall reinforcement was held constant and
no explicit external disrupters were arranged,
as in Jones (2003), Alsop (1988), and Nevin
et al. (1993), p(Ac) was equal or close to 1.0. As
a result, p(Ac) did not contribute to the data
fits and could be omitted from the model for
those studies. However, the effects of explicit
disrupters in Nevin et al. (2003) and of fixed-
ratio reinforcement in Nevin et al. (1963)
appear in the model as values of p(Ac), as well
as p(As), less than 1.0. Thus for generality of
model application, and for conceptual sym-
metry, both p(As) and p(Ac) are needed.

In view of their close temporal proximity in
zero-retention-interval procedures, it may
seem unreasonable to use different reinforcer
rates, contexts, and background disrupters for
attending to the samples and comparisons as
specified in Equations 5 and 6. For the pres-
ent, this approach appears to be successful in
fitting a number of findings in the literature,
but future research may suggest the need for
modifications.

The exponent b in Equations 2, 4, 5, 6, 9, 10,
and 11 represents the extent to which re-
inforcement determines resistance to change.
For a given rate of reinforcement relative to
the context, larger values of b correspond to
greater resistance to background or experi-
mentally arranged disrupters. Experiments
with many different reinforcer rates and two
levels of disruption, or with two reinforcer
rates and many disrupter values, are needed to
estimate b reliably. The experiments consid-
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ered here were not designed to give reliable
estimates of b ; accordingly, we set b 5 0.5
because that value is approximated in a num-
ber of multiple VI VI schedule studies design-
ed specifically to evaluate it (Nevin, 2002).

Overview of Model Parameters and Fits

Ideally, a model parameter would take the
same value, within error, across different sorts
of determinations. For example, timing balls
rolling down inclined planes, or timing the
swings of a pendulum, give the same value of
acceleration due to gravity in classical mechan-
ics. Such consistency is a rarity in the quanti-
tative analysis of behavior. However, the
present modeling efforts provide several ex-
amples of parametric consistency between sets
of conditions within an experiment. For
example, the data of Jones (2003) were well
fitted by holding dsb , p(As), and p(Ac) constant
across conditions with differences in C1 and
C2, and the data of Alsop (1988) were
adequately fitted by holding dbr , p(As), and
p(Ac) constant across conditions with differ-
ences in S1 and S2. Moreover, these constan-
cies were dictated by the definitions of the
terms of the model: dsb and dbr should depend
on the sample and comparison stimuli and be
independent of reinforcer rates (Davison &
Nevin, 1999), whereas p(As) and p(Ac) should
depend on reinforcer rates, which were
essentially constant across conditions in both
studies. When reinforcer rates varied between
components within an experiment, as in Nevin
et al. (2003), the background disrupter values
were held constant across components be-
cause the evaluation of differential resistance
to change requires that the same disrupter be
applied to both components (Nevin, 1992b),
and dsb and dbr were held constant across
components because the stimuli were un-
changed. Overall, we obtained good to excel-
lent fits by holding constant those parameters
that were identified with consistent aspects of
the experiments, and allowing variation in
parameters that were identified with experi-
mental variables. Although the number of
parameters in our model is large by compar-
ison with, say, the generalized matching law,
all of them are necessary to represent exper-
imentally defined features of the studies
examined here, and the number of data points
is substantially greater than the number of
parameters. The constancy of parameters

across independent studies may be evaluated
as systematic, parametric research on condi-
tional discriminations continues.

Testing the Model

The model predicts several effects that have
not, to our knowledge, been explored in the
research literature. For example, because we
assume, following Nevin (1992b), that attend-
ing is controlled by reinforcement relative to
a context (i.e., rs/ra) variations in reinforcer
rate in one multiple-schedule component
should produce contrast effects in accuracy,
as well as response rate, in a second, constant
component, with no changes in model param-
eters. Also, the progressive increase in accuracy
within fixed-ratio trial sequences was modeled
as resulting from increases in p(Ac). Because
p(Ac) determines the extent to which differ-
ential reinforcement affects responding to C1

or C2, sensitivity to differential reinforcement
should increase as the ratio advances. Re-
search along these lines could provide some
data of interest in their own right as well as
tests of the present model.

As the model is structured, there is no way to
be sure, a priori, whether a given experimental
disrupter affects p(As), p(Ac), or both. In our
analysis of the resistance-to-change data of
Nevin et al. (2003), we assumed that all
disrupters operated identically on both p(As)
and p(Ac) (see Equations 10 and 11). It would
be useful to devise methods for disrupting
p(As) or p(Ac) separately—for example, pre-
senting distracters only during presentation of
the samples or the comparisons—to evaluate
the independence of these attentional terms.
In particular, as shown by example in
Appendix B, decreasing p(As) by increasing
background disrupter x is predicted to reduce
measured accuracy more in the lean compo-
nent of a multiple schedule, whereas decreas-
ing p(Ac) by increasing background disrupter z
is predicted to reduce measured accuracy
more in the rich component. The effects of
targeted disrupters could provide strong tests
of the model.

It would be of special interest to examine
measurable aspects of behavior that might
accompany or correspond to attending, such
as requiring the subject to respond differen-
tially to the samples (e.g., Urcuioli, 1985) or to
adopt different positions within the chamber
to view the comparisons (Wright & Sands,
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1981). Analyses of this sort could evaluate the
effects of disrupters directly for comparison
with model estimates of p(As) and p(Ac).

FINAL REMARKS

In the larger scheme of behavior theory,
there are at least three ways to conceptualize
our model. First, attending may be construed
as a mental way station between discriminative
stimuli and behavior, and as such our model
may be accused of explaining behavioral data
by ‘‘appeals to events taking place at some
other level of observation, described in differ-
ent terms, and measured, if at all, in different
dimensions’’ (Skinner, 1950, p. 193). Second,
the probabilities of attending may be con-
strued as intervening variables whose names
and attributes are irrelevant because they have
no significance beyond their role in organizing
and summarizing data. Third, attending may
be construed as a hypothetical construct that
refers to physically real but unmeasured
activities that have properties similar to mea-
sured overt responding, and that must be
evaluated by inference via a mathematical
model. It is this final perspective that informs
our theoretical efforts and provides challenges
for future research.
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APPENDIX A

MODEL PARAMETERS AND TERMS

Components of Conditional Discriminations
S1, S2 Sample stimuli in matching to sample or signal detection
C1, C2 Comparison stimuli in matching to sample
B1, B2 Responses defined by comparison stimuli or topography, represented as counts in the

conditional-discrimination matrix of Figure 1.
R11, R22 Numbers of reinforcers for B11, B22

Model Structure
dsb Discriminability of stimulus-behavior relation. Depends on S1-S2 difference, sensory

capacity; does not depend on reinforcer rate or allocation
dbr Discriminability of behavior-reinforcer contingency. Depends on B1-B2 or C1-C2

difference, sensory or motor capacity; does not depend on reinforcer rate or allocation
p(As) Probability of attending to S1 and S2. Depends on reinforcer rate relative to session

context; does not depend on reinforcer allocation, dsb , or dbr

p(Ac) Probability of attending to C1 and C2. Depends on within-trial reinforcer rate relative to
context; does not depend on reinforcer allocation, dsb , or dbr

Momentum Equations
B Measured response rate (B/min)
rs Component reinforcer rate in multiple free-operant schedules or reinforcer rate for

attending to S1 and S2

rc Within-trial reinforcer rate after offset of sample stimuli for attending to C1 and C2

ra Overall average session reinforcer rate; ra 5 1 for single free-operant schedules
x Background disruption or competition for responding and for attending to sample

stimuli
z Background disruption or competition for attending to comparison stimuli
f, v, q, Parameters representing the effects of experimentally arranged disrupters:
c, d prefeeding, ICI food, delay, contingency termination, and generalization decrement.
b Sensitivity of changes in responding or in attending to values of rs/ra or rc/rs
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APPENDIX B

Method for calculating predicted log D for the rich and lean components in the study by
Nevin et al. (2003), assuming dsb 5 dbr 5 150 (see Figure 4).

Rich Lean
R11 R12 R21 R22 R11 R12 R21 R22

Scheduled reinforcers 96 0 0 96 24 0 0 24
Effective reinforcers 96 1.28 1.28 96 24 0.32 0.32 24

Response probabilities p(B1|S1) p(B1|S2) p(B1|S1) p(B1|S2)

State 1 (attend to S1/S2,
attend to C1/C2) .987 .013 .987 .013

State 2 (attend to S1/S2,
no attend to C1/C2) .500 .500 .500 .500

State 3 (no attend to S1/S2, attend
to C1/C2) .500 .500 .500 .500

State 4 (no attend to S1/S2,
no attend to C1/C2) .500 .500 .500 .500

Reinforcement rates required to calculate p(As) and p(Ac) from Equations 5 and 6 for rich and
lean components with VI 30-s schedules, 2-s samples, 1-s latencies to comparisons, four trials per
component separated by 30-s intercomponent intervals:

Rich Lean
Rft/hr for attending to S1/S2 (rs) 90 22.5
Rft/hr for attending to C1/C2 (rc) 2,880 720
Session average rft/hr (ra) 44.4 44.4

Parameters: x 5 0.1, z 5 0.0, b 5 0.5

Rich Lean
Calculated probabilities p(As) p(Ac) p(As) p(Ac)

of attending .932 1.00 .869 1.00

Rich Lean
Weighted probabilities p(B1|S1) p(B1|S2) p(B1|S1) p(B1|S2)

of responding .954 .046 .923 .077

Predicted log D Rich Lean
with x 5 0.1, z 5 0.0 1.315 1.079
with x 5 0.3, z 5 0.0 .927 .657
with x 5 0.1, z 5 1.0 .866 .769

a Note that relative to log D with x 5 0.1, z 5 0, increasing x reduces log D rich less than log D
lean, whereas increasing z reduces log D rich more than log D lean.
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