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Although elementary statistical methods such as
the calculation of means and their standard errors
are commonly employed, application of the
statistical methods of regression analysis in enzyme
kinetic studies has received little attention. In
estimating the kinetic parameters of the Michaelis—
Menten equation, for instance, graphical methods
such as the double-reciprocal plot (Lineweaver &
Burk, 1934) are generally used, without supple-
mentary statistical calculations. These methods
have been reviewed by Dixon & Webb (1958).

Graphical methods, however, do not usually
provide any measure of the precision of the deter-
minations, a knowledge of which is necessary for a
proper evaluation of the results in relation to
theoretical considerations, or for a comparison of
results obtained under differing experimental
conditions. The main purpose of a statistical
analysis is to supply, not only more accurate
estimates, but also the necessary measures of
precision.

This paper gives an account of the weighted and
non-linear regression methods applicable to general
problems in enzyme kinetics. Application of the
basic principles is illustrated in detail with the
computational methods given for estimating the
kinetic parameters K,, and V of the Michaelis—
Menten equation, and the relevant standard errors.
Further illustration is provided by a description of
the analyses applied in estimating dissociation
constants for enzyme and substrate (cf. Dixon,
1953) from the data of Atkinson, Jackson &
Morton (1961).

The methods described in this paper were
applied in the kinetic studies described in the
preceding paper by Atkinson ez al.

BASIC PRINCIPLES AND METHODS

Random variation ; terminology

Most experimental determinations are subject to
fluctuations of an unpredictable kind, usually on
account of experimental factors which are not
under rigid control and the inherent mechanical
limitations of the experimental apparatus, and
sometimes on account of the inherent variability in
the phenomena under investigation, as with radio-

active emissions. In this sense experimentally
determined quantities can be described as ‘random
variates,” and associated with each observation or
determination is a ‘conceptual population’ of all
possible values of the random variate that might
have arisen in similar circumstances to those which
have produced the actual value(s). The relative
frequencies with which different values of the
variate occur in this conceptual population con-
stitute the distribution of the variate (which may
have more than one distribution according to the
circumstances envisaged).

The true mean, or expected value, of a random
variate y is the average value of y in the relevant
conceptual population, and is denoted here by
E(y), py, or simply u. (The true mean is to be
distinguished from the sample mean ¥ of a series of
observations.) If the expected value of a determi-
nation deviates from a specified theoretical value,
the determination is described as being ‘biased’ in
that respect.

The variance of y is the average value, E(y — p)2,
of squared deviations from the mean in the con-
ceptual population, and is denoted here by V(y),
o2, or o® The square root o of the variance is
referred to alternatively as the standard deviation
(s.p.) or standard error (s.E.) according to context;
‘standard deviation’ is used primarily when
referring to the basic variability in the experi-
mental data, and ‘standard error’ when referring
to the precision of a statistic (such as a mean or a
regression coefficient) as an estimate of some para-
meter. The coefficient of variation, c.v.(y), is the
standard deviation of y expressed as a fraction of
the mean; c.v.(y) = o/p.

The covariance of two random variates y, and y,
is the average value of the product of corresponding
deviations in the relevant population of all possible
pairs of values (y;, ¥5):

Cov. (Y1 ¥2) = E(y1— 1) (42— pa).

The correlation, p, between y, and y, is a normalized
form of the covariance:

- Cov. (y1, ¥2)

P 0102 )
Two variates are described as ‘statistically inde-
pendent’ if the probability that one of them takes
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any value or range of values is independent of the
value taken by the other variate. It follows that
the covariance or correlation of two statistically
independent variates is zero. (The converse is true
only for normally distributed variates.)

The parameters of random variation described
above (and generally the parameters of any physical
system) are usually not known with exactitude, but
are, or have been, ascertained with an attendant
degree of uncertainty, by estimation from experi-
mental data. It is desirable in most contexts that a
semantic distinction should be evident, between
the parameters themselves and the corresponding
estimates.

Combination and transformation of variability

Quantitative studies usually involve a sequence
of calculations based on the experimental data.
The following rules enable the influence of experi-
mental variability to be determined at any stage of
this process, at least to a first order of approxima-
tion:

Change in scale of a quantity y by a factor A
clearly affects its mean and standard deviation
similarly, so that

E(y) = AE(y) 1)
s.D. (\y) = As.p. (y), V() = 2V(y). (2)

The basic rules for the addition of two or more
quantities are

E(y,+y.) = E(y,) +E(ys), (3)
Vg +42) = V(y)+ V(y:)+2 Cov. (y1, %), (4)
the latter being deducible from (3) since

E(ys +Ya— p1— pa)®

= E(yr— m)* + B — 1)+ 2E(y1 — pa) (%2 — pa)-
If y, and y, are statistically independent the
variances are simply additive. The rules (1)—(4) in
combination determine the mean and variance
(hence standard error) of any linear combination of
variates and, in particular, the variances of re-
gression statistics as given below.

For non-linear transformations the following
rules are only approximate since the non-linearity
introduces biases. The biases will be very slight,
however, if the transformation function exhibits
little curvature over the range of experimental
variation, as illustrated in Fig. 1.

Small deviations can be represented approxi-
mately by the linear part of a Taylor expansion,

S@) = f(py) + @ — po) [ (1),

where f’(u,) is the first derivative of f(y) at p,.
This is evident also from geometrical considera-
tions (Fig. 1). Since y— u, averages to zero in the
conceptual population of y values,

ELf )] ~ f(u)s (6

and
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and squaring and averaging f(y) —f(u,) give
VIf ] = %) Viy)- (6)
Bias in the last formula arises from bias in the
transformed mean as well as from neglecting higher-
order terms of the Taylor expansion, but again will
be small under the conditions mentioned.
Use of the formula (6) is illustrated by the trans-

formation of an estimated K,, into the negative
logarithm pK,, :

dlo =1 xl
3, 108 @ = loge x

so that

S.E. (K,,)
Km

& 04343 c.v. (K,,).

The generalization of (5) and (6) for functions of
two or more variates is straightforward. For a
function of two variates,

E(f(y1> ¥2) = fpas pa)s (7)

V(f(y1, %) = ;f V(y1) +f;f V(ys)
+ 2f;, f;, Cov. (y1, %), (8)

where f, , f, are the partial derivatives of f at
(p15> pg). The covariance term vanishes if y, and y,
are statistically independent. An important special
case is that of the product or ratio of variates,
Zz = Y,Y; OF 2 = ¥,/y,, in which case the variance
rule (8) on division by u? becomes
c.v.2(2) & c.v.2(y))+0.v.3(y,) + 2p C.V. (yy) C.V. (¥5),
(9
the minus sign applying for the ratio. If y, and y,
are statistically independent, the correlation p'is

zero, so that the squares of the coefficients of
variation are simply additive.

S.E. (pK,) = loge x

b

«'»“Q?

Flpy)

f@

My
Yy

Fig. 1. Non-linear transformation of an error distribution.
The slope of the tangent is the first derivative of f(y) at p,.
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Regression analysis

The relevance of the methods described below, for the
analysis of & series of observations, depends on the assump-
tions that the observations are in an effective sense statist-
ically independent and that their true distributions do not
differ appreciably from the familiar Gaussian or normal
form. With these assumptions the appropriate form of
analysis is determined by the behaviour of the true means
and variances.

A regression analysis is appropriate when the mean of a
variate y depends on factors z, such as temperature or pH,
which have been varied in the experiments. If a series of
observations y are available, together with the correspond-
ing values of determining variables x, and if the variance of
y is sensibly homogeneous over the series of observations,
a regression function Y(z) is fitted to the data so that the
sum of squares of deviations of the observations y from the
fitted function, X(y - Y)?, is as small as possible (the
method of least squares).

The series of observations may not be homogeneous in
variance, however. It may be that ¢? varies systematically
with p, or that the observations are of intrinsically differing
accuracy on account of the experimental procedure. It is
evident that some account must be taken of the differing
accuracies in fitting the regression function, and the
appropriate method is to fit the function so that the
weighted sum of squares of deviations, Tw(y - Y)?, is a
minimum, the relative weights w being the relative amounts
of ‘information’ and inversely proportional, in this con-
text, to the variances of the y values. (The more general
definition of ‘information’ is given by Fisher, 1925.)

The weighted-regression procedure is equivalent to
fitting an unweighted regression to an enlarged set of
points, each point of the original set being repeated the
appropriate w times. The essential differences, therefore,
are that weighted rather than simple means of observations
are calculated and likewise weighted sums of squares and
products. Details of the weighted analyses are set out
below for the two cases relevant to this paper, in which the
true regression is linear and dependent on either one or two
determining variables:

(1) By = “+ﬁz’
(i) py = a+ B2 +Py%,.

Case (i). The fitted regression is of the form ¥ = a + bz.
The weighted means are

T = Zwx/Zw, Y = Zwy/Zw,

and the estimated regression coefficient b and the constant
term a are given by the formulae:

_Zw@-%) (y-¥) ZIwzy - (Zwz) (Zwy)/Zw
T SwE-%)? | Zwr?- (Cwz)Zw

a =7y-bz.

If the variances of the observations y are o2 /w, the variance
factor o2 is estimated by the residual mean square,
o = 2y - V)t Zwy? -yTwy -bIw(x - 7) (y - §)
n-2 n-2 !

the divisor of the sum of squares of deviations (or residual
sum of squares) being the number of degrees of freedom of
the estimated variance, two less than the number of
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observations in this instance. The variances of @ and b are
given by the formulae:
V(b) = o*[Zw(z -7)?,
V(a) = o¥[1/Zw + Z*|Zw(z - 7)),
the latter following from (4) above since it may be ea.sily
shown that b and ¥ are statistically independent. Esti-
mated variances are obtained by substituting s for o*.
Case (ii). The fitted regression is of the form

Y = a+byx; +b2,.
Weighted means , 7, , 7, are calculated as in (i) above.Two
equations are obtained for the regression coefficients by
and b,, )

gy by +aigby = Py,

13D + @590, = Py,
where
a3 = Zw(x; - %) (2 — Ts),s
ags = Zw(wy — T,

Py = Zw(@, -F) Yy, Py = Zw(as—T5) Y.

The solutions of the equations are

by = 1Py +01aPss

by = €1aPy +C3Pss

ay = Zw(x, - 7,)°%

where
O = GgefA, €33 = ayfA, €3 = —ap/A
and A = a8y, —0ad.

The constant term is
a =Y -bT —byTy.

Similarly, as in (i) above, the variance factor ¢? is estimated
by the residual mean square:

- Zw(y - Y)? _ Swy? - §Zwy —bypy — by Py
n-3 n-3

The variances and covariances of the regression statistics
are

V(b;) = ci0? Cov.(by, by) = ¢p0%, Cov.(b;,%) =0,

V(bs) = c3p0%, Cov.(bs, %) = 0,
V(@) = o%(1/Zw +c, B +pa 73 + 201371 Ty)-

Omission of the constant term. If it is known that the
true regression passes through the origin (x = 0), the
fitted regression should be likewise constrained (a = 0).
The essential modification of the formulae given above for
this case is that crude sums of squares and products such as
Twa?, Twry are substituted everywhere for the corrected
sums of squares and products Zw(x-Z)? etc. In the
formulae for the residual mean squares, 82, the correction
factor 7Zwy is omitted and the degrees of freedom are
correspondingly increased by unity to (i) n -1, (ii) n - 2.

Use of estimated weights. The relative weights w may not
be known exactly, so that an approximate analysis must be
performed with estimated weights. In some situations a
more accurate analysis may then be obtained by repeating
the process with improved estimates of the weights
supplied by the first analysis. More than a single repetition
of the process is seldom necessary, however, except as a
check.

Non-linear regression functions. These can be fitted, with
little extra complication, by linear-regression methods; the
essential difference is that provisional estimates of certain

82
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of the unknown parameters are required. If a function
f(z, ¢) is non-linear in a parameter ¢ whose value is to be
estimated, and if a good provisional value c, is available,
the following linear approximation may be used:

f @, )= f(2, co) +(c —co) fo(=, co),

where f; is the first derivative of f with respect to ¢,
evaluated here at c,, and a linear regression analysis, in
terms of the provisional values of f and f corresponding to
the values of x, determines ¢-c, as a linear regression
coefficient. In this sense the process may be described as a
‘fine adjustment’ of the provisional estimate ¢,. A more
accurate analysis can be obtained, if necessary, by repeating
the process with the adjusted estimate as a new provisional
value. The extension of the method for a function non-
linear in two or more parameters is straightforward.

Applications
Estimation of K,, and V. The Michaelis—Menten
relation between velocity of reaction (v) of an
enzyme with a substrate and the substrate concen-
tration (s),
s

v= s+ K, Vs
can be expressed in the linear forms
1 1 K,1 s K, s
VTV s T T v iy

With the usual methods of determining velocities
of reaction, as described in the preceding paper
(Atkinson ez al. 1961), the velocity determinations
will be reasonably homogeneous in variance. If v
has variance ¢, the variances of 1/v, /v are
V(1/v) = o?/ul, V(s/v) = o%s%/ul
In fitting the above linear forms, therefore, the
correct relative weights are uj and ul/s? respec-
tively for the two types of fit.

As the true velocities p,(s) are unknown, pro-
visional fits of the lines can be obtained by using
observed velocities v, which supply weights v* and
v/s? respectively. In the case of the double re-
ciprocal plot the weighted means are

(1fv) = Zo*[Zot,  (1/s) = (Zu'/s)/Zo*,
and the weighted fit of the straight line
1/v = a+b(1/s)

as described above leads, with some simplification,
to the formulae for provisional estimates of K,, and
V given in Table 1. The same formulae are ob-
tained whichever linear form is fitted, the weighted
analyses being equivalent.

Fine adjustment of the provisional estimates may
be obtained by fitting the Michaelis-Menten
function directly in the hyperbolic form, with an
unweighted analysis. This process is preferable to
that of refitting the function in one of the linear
forms above with revised estimates of the relevant
weights, since not only are the calculations simpler

(cf. equation 6).
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but standard errors for the estimates are derived
more directly. In terms of the provisional esti-
mates K),, V9 the Michaelis-Menten relation can
be expressed in the approximate linear form:
V ([ sV° sV°
X —{—m—(Kp—K) ———1,
*% 5 {sr R~ e K G

% byf(8) + by file),
where b, = V/V° b, = b,(K,—K%), f(s) is the
provisional fit of the Michaelis-Menten function,
and fz(s) is the first derivative of the provisional
fit with respect to K,,. The problem is thus reduced
to that of fitting & bilinear regression (without a
constant term) as described above. The computa-
tional procedure is set out in Table 2.

The standard errors for V and K,, are derived
from those for b, and b, by application of the rules
(2) and (9). In particular,

S.E. (K,,) = 8.E. (by)/b;,

since the coefficient of variation of the factor b, is
negligible in comparison with that for K,, — K?,.

Use of the provisional value V° is not strictly
necessary since it cancels both in b,, f and in b,, f’.
The advantages are, however, that direct com-
parison of the provisionally determined velocities
with those observed provides a useful check for
arithmetical errors, and that b, is almost exactly
the fine adjustment for K,,. With repetition of the
process, b, and b, tend to unity and zero respec-
tively.

Estimation of dissociation constants. The estima-
tion of dissociation constants from a series of
determinations of K,, corresponding to a range of
values of substrate pH is discussed below. The
appropriate relation of K,, to hydrogen-ion concen-
tration H which must be fitted is

- H K,
= Z) (1+22
o = B(14g) (147).

in which K,, is the asymptotically minimum value

for K,,, and K,, K, the relevant dissociation con-
stants. Expressed equivalently as

K, = a+b H+by(1/H),

the function is in the form of a linear regression,
the determining variables being , = H, z, = 1/H.
A weighted fit of the regression is necessary on
account of the variation in precision of the deter-
minations of K,. The estimates of K, and K,
derived from a, b;, and b, are in this instance
regarded as provisional since a revision of the
relative weights is necessary.

For fine adjustment of the provisional estimates
it is appropriate, in this case, to fit the K,,(H)
function in the negative-logarithm or pK,, form.
In terms of the provisional values KJ, calculated
from the provisional estimates of K,, K, and K,,,
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the function can be expressed in the approximate
linear form

p(K /K3 ~ p(R,/K’) —p(Ky/K?)

K{+H
0 1/H
+ Pp(K,/K3) YK+ H®
so that the problem is again reduced to that of
fitting of a linear regression, the constant term and
the regression coefficients being the required
adjustments for pK?, pK, and pK?. The determin-
ing variables are the partial derivatives of the
provisionally fitted pK,, function with respect to
PK;, pK,. The regression calculations supply the
standard errors of pK,,, pK, and pK, directly.
Combined estimates of variability. In a series of
similar experiments the basic experimental vari-
ability may be sensibly homogeneous, in which case
a more accurate estimate of variance may be ob-
tained by calculating a weighted average of the
estimates from individual experiments. The indi-
vidual estimates are weighted according to their
degrees of freedom, so that the weighted average is
the ratio of the pooled (or added) residual sums of
squares from the individual experiments to the
total number of degrees of freedom. In the pre-
ceding paper (Atkinson et al. 1961) a pooled esti-
mate of the variance of velocity determinations
was obtained in this way from 17 experiments,
with a total of 66 degrees of freedom.

Rounding-off errors

The arithmetic process of rounding off to a given
number of figures causes an artificial increase in the
variance of computed quantities, which must be
kept as small as practicable to avoid appreciable
loss of information. The increase in variance of a
quantity due to rounding off is ¢2/12, where c is the
rounding-off interval. A simple rule is to retain, in
rounding off, the first two figures that are affected
by experimental variability. Thus if a quantity has
the value 0-12345 say, and the standard error of the
quantity is 0-003, the second decimal digit may be
in error by unity and the third is appreciably
affected. The variance of the rounded-off quantity
0-123 is (0-003)%+ (0-001)%/12, in which case the
relative loss of information is 1/109, or less than
19,. If the standard error had been much less than
0-003, the fourth decimal should also have been
retained, and, in the absence of any precise know-
ledge of experimental variability, retention of an
extra figure is a desirable safeguard.

A number of aspects have not been mentioned
here, such as the calculation of probabilities,
significance tests and fiducial or confidence limits.
A more detailed account of general principles and
methods is given by Fisher (1925), and of regression
methods by Williams (1959).
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ENZYME KINETIC DETERMINATIONS
Estimation of K, and V

The procedure set out below for estimating the
kinetic parameters K,, and V of the Michaelis—
Menten equation consists of two stages, the calcu-
lation of provisional estimates, and the fine adjust-
ment of the provisional values, the latter stage also
supplying standard errors for the estimates. A
locally defined notation is used to describe each
step of the computations in terms of the preceding
computations; consequently some symbols, such as
o, B, v, ..., occur with different meanings in each
stage. Numerical illustration of the calculations is
given in parallel, with data from Atkinson et al.
(1961).

Provistonal estimates of K, and V. (i) Graphical.
A number of graphical methods for determining
K,, and V have been suggested, based on various
linear forms of the Michaelis—-Menten relation
(see Dixon & Webb, 1958). Of the two linear forms:

VTV s T T
the double reciprocal form (Lineweaver & Burk,
1934) is the more commonly used. However,
statistical considerations suggest that more accur-
ate subjective estimates can be obtained by fitting
the alternative form linear in s/v and s. Assuming
that v is reasonably homogeneous in variance,
the reciprocal 1/v exhibits much greater variation
in accuracy over the practical ranges of substrate
concentration than does s/v. This is illustrated
in Fig. 2, which shows the variations in the relative
weights (reciprocals of variance) of 1/v and s/v.
(The scales are arbitrary for each weight function.)

100 J I ! I I
80 w a
g am -7
40— -
w(s/v)

0

Relative weights w
A oD
1
|

1 1 ] ] 1 ]
113 12 23 1

8/Kp

Fig. 2. Variation in relative weights of 1/v and s/v over a
range of substrate concentrations (logarithmic scales).
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Over the range of substrate concentration from
one-third to three times the K,,, the relative
weight of 1/v varies by a factor of 80, whereas the
relative weight of s/v varies by less than a factor
of 2. If a statistical analysis were carried out with
the correct weights, identical and hence equally
precise estimates would be obtained with either fit.
However, appreciable deviations, of whatever
kind, from correct weighting will result in less
accurate estimates of K,, and V, and with sub-
jective fitting it would seem much more difficult to
take proper account of the variation in weight
when this is extreme than when it is relatively
slight, as with s/v.

A third linear form discussed by Hofstee (1952),
v = V—K,v/s, suffers to a less extent from the
same statistical disadvantage as the double re-
ciprocal form, with the added complication that
both the variables are affected by the experimental
variability in ». Hofstee suggests that a certain
type of non-linearity is more readily detectable
with the third linear form, but this argument may
be questioned.

(ii) Statistical. Although in any case it may be
necessary to determine a graphical plot in order to
detect significant experimental aberrations, such
as inhibition by an excess of substrate (Dixon &
Webb, 1958), statistically-determined provisional
estimates take little time to compute, and their
greater accuracy improves the accuracy of the fine-
adjustment process. The calculations are set out in
Table 1, the relevant formulae being derived by the
weighted fit of a linear regression, as described in
an earlier section.

With a standard desk calculator, x = v2 may be
left in the machine and the division by s performed
after recording . For the accuracy with which v is

Table 1. Calculation of provisional estimates of
K, and V

For details, see text; illustrative values are from data of
Atkinson et al. (1961).

s (pH 4-95)* vt z = 0? y = v?fs
0-138 0-148 0-022 0-159
0-220 0-171 0-029 0-133
0-291 0-234 0-055 0-188
0-560 0-324 0-105 0-187
0-766 0-390 0-152 0-199
1-460 0-493 0-243 0-166

o = Zvz = 0234184
B = Zx? = 0-097528
y = Zvy = 0-310303
& = Zzy = 0-107916
€ = Zy? = 0-180440

A = ae-y8 = 0-0087695
K,, = (By —a8)/A = 0-569*
V = (Be-8%)/A = 0-679t

* Concn. of nicotinamide mononucleotide, mm.
T pmoles of nicotinamide-adenine dinucleotide formed/
3 min./mg. of enzyme protein.
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determined by current experimental methods,
recording of s and v to 3 significant figures (and
likewise the columns z and y) is quite adequate.
However, the sums of squares and products should
be recorded to the full accuracy of 6 or 7 significant
figures, since 2 or 3 significant figures may be lost by
subtraction when computing A and the numerators
of K,, V.

Fine adjustment of the provisional estimates. This
process is based on fitting a bilinear regression of v
on the corresponding values of the provisionally
fitted Michaelis-Menten function and its first
derivative, as described above. The calculations
are set out in Table 2, together with the supple-
mentary calculations for determining standard
errors, the numerical illustration continuing from
Table 1.

The instructions in regard to accuracy are essenti-
ally the same as for Table 1. It is even more
important here to record the intermediate calcula-
tions, and hence b, and b,, with great accuracy,
since the residual sum of squares is not calculated
directly as a sum of squares of deviations, but by
the indirect process of subtraction from Xv2?, in
which up to 3 or 4 significant figures may be lost.

Estimation of dissociation constants

The kind of statistical analysis required is
illustrated here with the analyses applied to the
data of Atkinson et al. (1961). These authors
determined K,, values in a series of experiments
with substrate pH varying from 4-95 to 10-55, and
in estimating dissociation constants for the enzyme
and substrate from these data the abpropriate
function to be fitted, relating K,, to hydrogen-ion
concentration H, was

~ H K,
o) (15).
K, and K, being the relevant dissociation constants
(cf. Dixon & Webb, 1958). The basic data for the
calculations described here are presented in
Table 3, excluding an aberrant K,, determination at
pH 9-77 (see below).

Consideration of the experimental procedure
(Atkinson et al. 1961) suggested that the K,
determinations would be subject individually to
biases fluctuating from experiment to experiment,
or, differently expressed, that the inter-experi-
mental variability of the K, values would be
greater than indicated by their intra-experimental,
or internal variance. This additional source of
varigtion had to be taken into account, particu-
larly in assessing the precision of the final estimates
of K, and K,. In the actual estimates of K, and K,,
however, it was expected that the net effect of
bias would be very small, since the data themselves
exhibited no evidence of a systematic deviation
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from the theoretical form of the K,,(H) function as
given above, and that any systematic bias would
be mostly absorbed in the estimate of the constant

It was also evident that the biases would be
essentially of & multiplicative kind in their effect on
the K,, values, so that the variance of the inter-
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experimental fluctuations in bias would be essenti-
ally homogeneous on a logarithmic scale. It was
thus appropriate to fit the K,, function above in the
(negative) logarithmic form pK,,.

Provisional estimates of K,, K, and K, were
derived by fitting a weighted bilinear regression
of K, on H and 1/H. The appropriate weights

Table 2. Fine adjustment of the provisional estimates of K,, and V
For details, see text; illustrative calculations continue from Table 1. Provisional estimates: K9, = 0-569,*

V® = 0-6791 (Table 1).

s ot s+K% f=TVo/(s+K%) f =-VOs/(s+K%)
0-138 0-148 0-707 0-1325 -0-1874
0-220 0-171 0-789 0-1893 ~0-2400
0-291 0-234 0-860 0-2298 -0-2672
0-560 0-324 1129 0-3368 -0-2983
0-766 0-390 1-336 0-3896 -0-2918
1-460 0-493 2:029 0-4886 -0-2408

@ =3f*=06101511. y =Zff =-04634727. 8§ =Zof = 0-6077005.
B=3Xf?= 03962204 =X uf =—0-4604656.
A = af —y* = 0-02695286.
b, = (B5—ye)/A = 1-0156833. ¥V = b, V0 = 0-6901
b, = (xe —y8)/A = 0-0259341. K, = K$+by/b, = 0-595*
o = 0-606026. S = (Sv?—b,5 —bye)/(n —2) = %7365,

1,
s.E. (K,) = I‘% J% = 0-064*

* Concn. of nicotinamide mononucleotide, mm.

= 0-0001841 (4 p.F.).1§
s.5. (V) = Vo8 Jg — 0-036.4

1 wpmoles of nicotinamide-adenine dinucleotide formed/3 min./mg. of enzyme protein.

1 The symbol § denotes a standard deviation.

§ Standard errors for K,, and V may alternatively be calculated by using a more accurate estimate of experimental

variance derived from a series of experiments.

Table 3. Data for the estimation of dissociation constants K, and K, derived from Atkinson,
Jackson & Morton (1961)

The provisional values K9, K3 and K, are given in the text.

H 1/H
P(K,,/KS) K +H K3+ 1/H

pH K K% () (1) (x3) w(K,)  w(pK,) w(pK,)
495 0-594 0-5864 -0-0056 0-8651 0 0-045 436 305
515 0-450 0-3992 -0-0520 0-8019 0 0-121 544 354
553 0-187 0-2125 0-0556 0-6278 0 0-639 809 450
585 0-139 0-1430 0-0123 0-4469 0-0001 2275 1309 571
621 0-105 0-1070 0-0082 0-2608 0-0002 4329 1394 587
6-66 0-108 0-0890 ~0-0840 0-1113 0-0005 4272 952 491
716 00879  0-0823 -0-0281 0-0381 0-0016 2689 514 341
7-63 00877  0-0805 -0-0372 0-0132 0-0046 2-899 528 347
795 00752  0-0804 0-0291 0-0064 0-0096 3-476 632 389
844 00791  0-0817 0-0135 0-0021 0-0292 3411 639 392
876 00719  0-0842 0-0881 0-0010 0-0591 6779 1349 579
9-40 01129  0-1008 -0-0492 0-0002 0-2152 1717 491 331
955 0-106 0-1098 0-0153 0-0002 0-2794 1-552 526 346
10-00 0-180 0-1655 -0-0365 0-0001 0-5220 0-436 336 252
10-35 0-298 0-2726 -0-0387 0 - 0-7098 0-086 179 152
10-55 0-336 0-3858 0-0601 0 0-7950 0-052 217 179
g = 00022 Z —02220 Z =00770f 34778 108556 6066

7 =-00010 z = 02167 z = 0-0992%

* Concn. of nicotinamide mononucleotide, mm.
1 Weighted means based on the weights w(pK,,).
1 Weighted means based on the weights w'(pK,,).
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w(K,,) for this analysis are shown in Table 3,
these being the reciprocals of the internal variances
of the K,, values, excluding an estimated variance
factor, 0:0001885. The estimates obtained were

K} = 174-9x 108, K3 = 0-01092 x 10-8,
R = 0-0791 mm.

To determine an estimate of the inter-experi-

mental variance component, the bilinear regression -

of the negative logarithms p(K,,/K2) on
z; = H/(K}+H) and z, = (1/H)/(1/K3+ 1/H)

was fitted with the weights w(pK,) shown in
Table 3, these being the reciprocals of the esti-
mated internal variances of the pK,, values;
w(pK,,) = (2-303)2K%/V(K,,). The provisionally
fitted values KJ, are also shown in Table 3, these
being derived from the provisional estimates above
for K,, K, and K,,. The analysis determined (as
regression coefficients) the fine adjustments
p(K,/K}) = 0-002, p(K,/K3) = —0-001, which are
comparatively negligible, and yielded a residual
mean square, s? = 1-6764, based on 13 degrees of
freedom.

The expected value of the mean-square s? is
unity if the inter-experimental variance com-
ponent is excluded. Although the observed value
is significantly greater than unity at only the 109
level of significance (cf. Fisher & Yates, 1938,
Table V, entered with 13 and 66 degrees of freedom),
the reality of the additional component of variance,
in any case, was not in question. Assuming the
inter-experimental variance of each pK,, to be the
sum of the internal variance and the inter-experi-
mental variance component o},

V(pKn) =

1
_+ 2
w(pKy) 7
it may be shown, by application of the basic rules,
that the expected value of s? is

2 Z 2
E(s?) = 1+% {Zw-z—'fv--cuzwz(xl—zl)z

— 21 Zwk(2; — ;) (T3 — Tp) — Cgp T (2, — 772)’} s

the coefficients c¢;; being those which occur in the
regression calculations. Equation of the observed
and expected values gave an estimate of the
variance in bias, s = 0-000986, and addition of
this value to the internal variances gave the esti-
mated inter-experimental variances of the pK,,
values, the reciprocals w’(pK,,) of which are shown
in Table 3.

In the final analysis the bilinear regression of
pP(K/KS) on z, and z, was refitted with the weights
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w'(pK,,), the provisional values K, being as before.
The regression equations obtained were:

508-9070b, — 130-1409b, = 0-214692,

—130-1409b, + 243-4536b; = 0-671626,
(A = 106958-59),
which gave the fine adjustments
p(Ky/K}) = —b; = —0-001,
p(K,/K3) = b, = 0-003,
and hence
p(E../R) = a = —0-002,
Adjustment of the provisional estimates
pK? = 5757, pK3 = 9-962, pK® = 4-102,
gave the final estimates
pK, = 5756, S.E. = 0-048;

pK, = 9:965, s.E. = 0-069;

pK,, = 4100, sz = 0-019;
the standard errors being the square roots re-
spectively of ¢;; = 243-5/A, c, = 508-9/A, and

(1/Zw' + ey + 2015 FF; + CpT3 )-
The weighted means Z{, %; are shown in Table 3.

The final estimates obtained differ only very
slightly from the provisional estimates; the major
function of the subsequent analysis has been to
determine the relevant estimates of standard error.

A determination of K,, at pH 9-77 was omitted
from the calculations described on account of gross
aberration (— 0-19 on the pK,, scale) from the pro-
visionally fitted pK,, function. This aberration was
judged, on account of its magnitude, to be almost
certainly due to an atypical experimental defect
such as an accidental contamination of the sub-
strate. Omission of the aberrant determination
increased the estimate of pK, by 0-05.

It might seem above, since the variations in the
weights w’ are not very marked, that a simpler un-
weighted analysis would have sufficed. Almost the
same estimates of K, and K, are obtained, but the
estimates of standard error are affected:

S.E. (pK,;) = 0:044, s.E. (pK,) = 0-050.
The main difference is in the standard error of pK,,
from which it is evident that the unweighted

analysis has resulted in the amount of information
regarding pK, being overestimated by nearly 100 9.

DISCUSSION

The utility of the statistical methods described is
largely self-evident in the illustrations given. The
basic principles can be applied, with analogous
computations, to other problems in enzyme kinetics
such as the determination of inhibitor constants
(cf. Dixon & Webb, 1958), and more generally are
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applicable whenever functions of known or assumed
form are to be fitted to experimental series of
values. The calculations required are not unduly
time-consuming, usually involving only a fraction
of the corresponding time spent in laboratory work
and planning.

The statistical methods not only supply more
accurate estimates and the necessary measures of
precision but have a further advantage, in that

subjective biases which might otherwise have °

arisen are thereby avoided. In fitting by eye, for
instance, a series of straight lines to Lineweaver—
Burk plots corresponding to a range of substrate
PH values, there may be a subjective tendency to
fit the lines either steeper or flatter than they
should be, giving rise to distortions in the actual
trend of K,, with pH. Another kind of bias arises if
there is a subconscious tendency to make the trend
in slope of the series of lines rather more uniform
than it should be. A plot of the K,, determinations
against pH would give, as a consequence of the
subjective elimination of variability, a misleading
visual impression of the accuracy of the experi-
mental work, and certainly significance tests based
on such determinations would be invalid.

It should be emphasized that statistical measures
of precision supply a gauge for random variation
only. An experiment may supply, in this sense, a
precise determination, which nevertheless is
seriously biased by some defect or limitation in
the experimental procedure.

SUMMARY

1. An account is given of the weighted and non-
linear regression methods relevant to enzyme kinetic

G. N. WILKINSON

1961

studies, with a brief preliminary outline of statistical
terminology and the basic calculus of random
variation.

2. Statistical considerations indicate that, for
graphical determinations of the parameters K,, and
V in the Michaelis—-Menten equation, the linear
plot of s/v against s is preferable to the double
reciprocal plot.

3. A computational procedure is given for
estimating K,,, V and the relevant standard errors.

4. The application of regression methods is
further illustrated with the estimation of dissocia-
tion constants from a series of K,, determina-
tions. :

The author is grateful to Professor R. K. Morton, and to
Dr M. R. Atkinson and Mr J. F. Jackson, for the collabora-
tion which has led to the writing of this paper, and for
permission to use their data in illustration.
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Insect haemolymph contains free amino acids in
higher concentrations than the blood of other
animal groups; detailed data have been collected
from different species of various orders of insects
only in the last ten years, mainly after the de-
velopment of microbiological and chromatographic
methods of analysis.

Some investigators have recently studied the
variations of amino-acidaemia during develop-
mental stages of holometabolous insects, in relation

to the metabolic processes involved (cf. Florkin,
1959).

As part of a research on amino acid metabolism in
Orthoptera, we report here the quantitative
pattern of the free amino acids in the blood of a
locust, Schistocerca gregaria Forsk., at various
stages of development. A similar investigation on
a grasshopper, Anacridium aegyptium L., has
already been published (Benassi, Colombo &
Peretti, 1959).



