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A crucial step toward understanding visual processing is to obtain
a comprehensive description of the relationship between visual
stimuli and neuronal responses. Many neurons in the visual cortex
exhibit nonlinear responses, making it difficult to characterize their
stimulus–response relationships. Here, we recorded the responses
of primary visual cortical neurons of the cat to spatiotemporal
random-bar stimuli and trained artificial neural networks to predict
the response of each neuron. The random initial connections in the
networks consistently converged to regular patterns. Analyses of
these connection patterns showed that the response of each
complex cell to the random-bar stimuli could be well approximated
by the sum of a small number of subunits resembling simple cells.
The direction selectivity of each complex cell measured with
drifting gratings was also well predicted by the combination of
these subunits, indicating the generality of the model. These
results are consistent with a simple functional model for complex
cells and demonstrate the usefulness of the neural network
method for revealing the stimulus–response transformations of
nonlinear neurons.

In the primary visual cortex, response properties such as the
spatial structure of the receptive field (RF) and tuning to

orientation of the stimuli have been studied extensively with
simple stimuli (e.g., light spots, bars, and sinusoidal gratings) that
were specifically designed to measure these properties (1, 2).
Although these studies have provided crucial insights into the
functions of the primary visual cortex, the information obtained
with such a paradigm may be insufficient for understanding the
neural responses to complex spatiotemporal inputs, which are
frequently encountered in the natural visual environment. An
alternative approach is to use large ensembles of complex stimuli
to probe the stimulus–response relationship. One example of this
approach is the use of white-noise stimuli and the reverse
correlation method in characterizing sensory neurons (3–6). The
resulting linear RFs can be used to predict the neuronal re-
sponses to other arbitrary stimuli (6–9). However, although the
linear method has been useful in characterizing neurons in the
early visual pathway, including simple cells in the primary visual
cortex (4, 10), it is much less applicable to complex cells due to
nonlinearities in their responses (1, 11). Thus a method for
characterizing the responses of nonlinear neurons to complex
inputs is desirable.

Multilayer feed-forward neural networks have been success-
fully applied to a variety of problems to extract the input–output
relationship of nonlinear systems (12). Despite the structural
simplicity of these artificial networks, they have led to insights
into the functions of various biological circuits (13–17). Here, we
have trained neural networks with the back-propagation algo-
rithm (18) to predict the responses of V1 neurons to random-bar
inputs. For complex cells, the random initial connections in the
networks consistently converged to patterns that were highly
regular: the RFs of the hidden units had alternating ON and OFF
spatial subregions, resembling the RFs of simple cells. The
responses to the random-bar stimuli as well as the direction
selectivity of the complex cells were well predicted by the
combination of these units. Thus, despite the anatomical com-
plexity of the cortical circuitry, responses of complex cells can be

approximated by the combination of a small number of compu-
tational subunits resembling simple cells (11, 19).

Methods
Physiology. Adult cats (2–3 kg) were initially anesthetized with
isoflurane (3%, with O2) followed by sodium pentothal (10
mg�kg, i.v., supplemented as needed). Anesthesia was main-
tained with sodium pentothal (3 mg�kg�hr, i.v.) and paralysis
with vecuronium bromide (0.2 mg�kg�hr, i.v.). Pupils were
dilated with 1% atropine sulfate, and nictitating membranes
were retracted with 2.5% phenylephrine hydrochloride. The eyes
were mechanically stabilized and optimally refracted. End-
expiratory CO2 was maintained at 4–4.5% and core body
temperature at 38°C. ECG and electroencephalogram were
monitored continuously. All procedures were approved by the
Animal Care and Use Committee at the University of California,
Berkeley.

Visual Stimulation. Stimuli were generated on a personal com-
puter and presented on a Barco (Kortrijk, Belgium) CCID 121
monitor (40 � 30 cm, refresh rate 120 Hz). The random-bar
stimulus was presented in a rectangular patch covering the RF
of each cell, containing 16 bars with their length equal to or
slightly longer than the RF. The contrast of each bar was
temporally modulated according to a pseudorandom binary
m-sequence (5, 20) (luminance: � 39 cd�m2 from the mean of
40 cd�m2). The full m-sequence was 32,767 frames long, updated
every other frame for an effective frame rate of 60 Hz.

Neural Recording. Single-unit recordings were made from 38 cells
in V1 with tungsten electrodes (A-M Systems, Everett, WA).
Each cell was briefly characterized with drifting sinusoidal
gratings. Cells were classified as simple if their RFs had clear ON
and OFF subregions (1) and if the ratio of the first temporal
harmonic to the mean response to an optimally oriented drifting
grating was greater than one (21). All other cells were classified
as complex. The full m-sequence was repeated at least three
times for each cell, and RF stability was checked between
presentations. Two cells were excluded because of eye move-
ment. Seven cells were excluded because of low responsiveness
(�1 spike�sec) to the m-sequence stimulus. For the remaining 29
cells (21 complex, 8 simple), spike trains were smoothed with a
Gaussian filter (� � 10 msec) and then binned at the stimulus
frame rate and averaged.

Network Structure and Training. We trained two-layer neural
networks with a tapped-delay line architecture (Fig. 1). There
were 256 inputs, representing the spatiotemporal luminance
signals S1(t), S1(t � 1), . . . , S1(t � 15), . . . , S16(t � 15), where
the subscripts index the spatial positions of the bars, and t, . . . ,
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t � 15 represent the 16 time delays in the temporal window (267
msec) preceding the response at time t. These luminance signals
were represented as �1 (dark) and 1 (light). Each hidden unit
had a hyperbolic tangent activation function tanh(x) � (ex �
e�x)�(ex � e�x). The output unit had a linear activation function
and represented the instantaneous firing rate at time t. Thus the
network transformed the spatiotemporal visual stimulus into a
time-varying neuronal response. The network connections were
initialized with Gaussian random numbers with zero mean and
SD of 0.05 � d�1/2, where d represents the number of inputs to
a particular layer. Bias terms for the hidden and output units
were implemented by including an extra unit with a fixed value
of 1. The connections from the bias units to the hidden and the
output units were optimized with the other connections.

Gradient descent was implemented with the back-propagation
algorithm by using batch mode training (18). Briefly, the lumi-
nance stimuli were presented to the network, and the outputs
were compared with the recorded responses. After each cycle
through the training set, all of the network weights were adjusted
to reduce the mean-square difference between the network
output and the recorded response. To accelerate convergence,
we used adaptive learning rates and added a momentum term to
the weight updates (22). We also added a small decay term to
each weight update (23) that drove weights that did not con-
tribute to minimizing the error toward zero. Each connection
weight was updated according to �wi(t) � ��E��wi �
��wi(t � 1) � � sgn(wi(t � 1)), where wi is the weight of the ith
connection in the network, � is the learning rate, �E��wi is the
gradient of the error function computed by back-propagation
(18), � is the momentum (set to 0.7), � is the weight decay (set
between 0.0001–0.001), and sgn(x) � 1 for x � 0 and sgn(x) �
�1 for x � 0.

The recorded stimulus–response data for each cell were
partitioned into three nonoverlapping sets. The training data
consisted of 24,576 stimulus–response pairs (	7 min). A vali-
dation set with 4,095 pairs (	1 min) was used to determine when
training was stopped. Training was terminated when the mean-
square error of the validation set exceeded the averaged error of
the past 25 iterations. This method of early stopping minimizes
overfitting on the training data (24). Most networks reached the
termination point at between 200 and 1,500 iterations. A min-
imum of five networks were trained for each cell by using
different initial conditions, and the network giving the minimum
error for the validation set was selected as the final model. In

some cases, a few networks performed similarly well in predict-
ing the neuronal responses, and we noticed that they always
showed similar hidden-unit RFs. We used a third test data set
(4,096 pairs, 	1 min) to evaluate the network performance.

To determine the proper number of hidden units for the
networks, we modeled a subset of complex cells (n � 10) by using
networks with one, four, and eight hidden units. The mean
correlation coefficients for the test data were 0.28, 0.35, and 0.34
for one, four, and eight hidden units, and the performance of the
networks with eight hidden units was not significantly different
from that with four hidden units (P 
 0.40). Thus for all of the
cells used in this study, we used four hidden units for the initial
network.

Because networks trained with the gradient descent algorithm
can be trapped in local minima, they may have failed to capture
some of the response properties. We therefore trained a second
network on the residuals (the difference between the network
prediction and the actual response) of the best network attained
using the original firing rate. These residual networks had the
same structure and inputs as the initial networks. The final
network model for the cell was taken as the sum of the two
networks giving the minimum error on the validation data. This
combined network is functionally equivalent to a single network
with eight hidden units. Empirically, however, training the two
networks sequentially consistently provided a better fit of the
data than training a single network with eight hidden units.

To determine the number of significant hidden units used by
the network, we computed the mean-square error of the vali-
dation data after eliminating each possible combination of the
hidden units. The number of significant hidden units was de-
termined as the minimal combination that reduced the error to
within 5% of the reduction attained by the full network.

Results
Predicting Cortical Responses to Random-Bar Stimuli. We measured
responses of simple and complex cells in the striate cortex of
anesthetized cats. The stimulus consisted of 16 bars along the
preferred orientation of the cell. Each bar varied randomly
between light and dark over time. A neural network (Fig. 1) was
trained to predict the response of each neuron to the random-bar
stimuli (see Methods). After training, we tested the performance
of the network using a data set that was not used in training.

Fig. 2a shows the comparisons between the actual neuronal
responses and the predictions by the networks for a simple and
a complex cell. For both cell types, the networks captured well
the temporal features in the responses, although they had a
tendency to underestimate responses at high amplitudes (see
Discussion). To further evaluate the performance of the network
method, we compared it with the linear method that has been
used previously to predict the responses of sensory neurons
(7–9). We estimated the spatiotemporal receptive field (STRF)
of each cell (Fig. 2b Lower) by averaging the stimulus preceding
each spike (5, 25) using the training data set. The response of the
cell to new stimuli (test data) was predicted as the convolution
of the visual stimuli with the estimated linear RF followed by a
halfwave rectification, with a threshold and a scaling factor as
free parameters (Fig. 2b Upper). Fig. 2c summarizes the perfor-
mance of the networks versus that of the linear method for 8
simple and 21 complex cells, measured by the correlation
coefficients between the predicted and the actual responses
(averaged over three to nine repeats of a 1-min stimulus
sequence, mean � 4). The mean correlation coefficients for the
simple cells were 0.45 (network) versus 0.44 (linear), and those
for the complex cells were 0.31 (network) versus 0.17 (linear).
Because the actual responses were averaged from small numbers
of repeats, the performance of both methods is significantly
underestimated by these correlation coefficients because of
variability in the responses. To obtain a better measure of the

Fig. 1. Artificial neural network structure. (Left) One frame of the random-
bar stimuli. The bias units are omitted for clarity.
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performance of these methods, we recorded the responses of a
subset of the neurons (five simple and eight complex cells) to 40
repeats of a short stimulus sequence (9 sec). For these response
data (Fig. 2d), the mean correlation coefficients for the simple
cells were 0.54 (network) versus 0.54 (linear), and those for the
complex cells were 0.56 (network) versus 0.33 (linear). For all of
the simple cells, the performance of the networks was not
significantly different from that of the linear method (P 
 0.10).
For most of the complex cells (seven of eight), on the other hand,
the network performed significantly better than the linear
method (P � 0.001), indicating that the networks learned
significant aspects of the nonlinear response properties of the
complex cells.

Connections in the Networks Modeling Simple Cells. Although the
structure of a feed-forward neural network differs from the
visual cortical circuitry, the connection patterns in the trained
networks may reveal the functional nature of the stimulus–

response transformation performed by cortical neurons. For
each hidden unit of a trained network, we examined its connec-
tions with all of the input units, which represents the STRF for
that hidden unit.

For a simple cell, only one to three (mean � two) of the eight
hidden units contributed significantly to predicting the re-
sponses. The RFs of these significant hidden units had spatially
separate ON and OFF subregions (Fig. 3b). These RFs were
nearly identical to the linear RF of the cell (Fig. 3a), indicating
that the network approximated the responses of simple cells in
a manner similar to the linear method. To gain a better under-
standing of how both methods predicted the simple cell re-
sponses, we plotted the firing rate of each cell versus the
convolution of the stimuli with its RF (Fig. 3 c and d, dots). This
convolution can be thought of as the intracellular response of the
cell, which has an approximately linear relationship with the
stimulus (26). The firing rate of the cell as a function of this linear
response showed a nonlinear monotonic increase, which pre-
sumably reflects the relationship between the firing rate of the
cell and its intracellular response. In the linear method, a
halfwave rectification was used to approximate this nonlinear
relationship (Fig. 3c, line), whereas in the neural network, the
hidden-unit activation function was used (Fig. 3d, line). When
the actual responses were fit with a half-power function y(x) �
�max(x, 0)� (where x and y represent the result of the convolution
and the firing rate, respectively, and � and � are free parame-
ters), the mean exponent (�) of the simple cells was 2.1 � 0.6
(n � 8, mean � SD), similar to that measured by Anzai et al. (27)
in the visual cortex of the cat.

Fig. 2. Predicting cortical responses to the random-bar stimuli. (a) Compar-
ison between the actual responses of a simple and a complex cell with the
network predictions. Line: actual responses averaged from 40 repeats of the
stimulus; shaded: predicted responses. (b) Comparison between the actual
responses (line) with the predictions (shaded) by the linear method. (Lower)
Linear RFs of the cells computed with reverse correlation (5, 25). (Bars: vertical,
50 msec; horizontal, 1°) (c) Correlation coefficients between the predicted and
the actual responses for the networks vs. those for the linear method, for 8
simple (open) and 21 complex (solid) cells. Triangles: cells used in d. (d)
Correlation coefficients between the predicted and the actual responses
(averaged from 40 repeats) for a subset of cells (triangles) in c. [Error bars: �
SE, estimated using a nonparametric bootstrap (44).] The correlation coeffi-
cient between the actual responses averaged from different repeats (20
repeats each) was 0.81 for complex cells and 0.87 for simple cells.

Fig. 3. Analysis of a network representing a simple cell. (a) Linear STRF of the
simple cell. (b) STRF of the significant hidden unit of the network. Luminance
indicates the sign and strength of the connection from each input unit.
(horizontal bar, 1°) (c) Firing rate of the neuron (dots: mean; bars: � SE) vs. the
linear response and the approximation of this function by the linear method
(line). (d) Firing rate of the neuron vs. the linear response of the significant
hidden unit, and approximation of this function by the hidden-unit activation
function (line).
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Connections in Networks Modeling Complex Cells. The trained net-
work for each complex cell had two to six hidden units (mean �
3.8) that contributed significantly to predicting the neuronal
responses. The RFs of these hidden units had segregated ON and
OFF subregions that evolved smoothly over time (Fig. 4),
resembling the RFs of simple cells (Fig. 3a). These hidden-unit
RFs differed from the linear RFs of the complex cells, most of
which did not show spatial segregation of ON and OFF subre-
gions (Fig. 2b Lower). The RFs of different hidden units
exhibited similar spatial frequencies but different phases, indi-
cating that the networks used several distinct subunits to simu-
late the responses of complex cells.

The RFs of some hidden units had similar spatiotemporal
profiles and differed only in the sign and amplitude of their
responses (e.g., units 3 and 4 of Cell a, units 3 and 4 of Cell c;
Fig. 4), suggesting redundancy among different hidden units. To
further simplify the network models, we performed a principal
component analysis of all of the significant hidden units of each
network (Fig. 5a), yielding a set of linearly independent principal
components that together account for all of the variance in the
hidden-unit RFs. For each network simulating a complex cell,
one to three principal components (mean � 2.1) were sufficient
to account for 
95% of the variance (Fig. 5b). These significant
principal components always showed similar numbers of ON�
OFF subregions and temporal dynamics as the original hidden-
unit RFs but had different spatial phases.

To understand how these principal components contribute to
the responses of complex cells, we plotted the firing rate of each
complex cell against the convolution of the stimuli with each of
the significant principal components (Fig. 5 c and d). Most of
these functions were bimodal, clearly distinct from the mono-
tonic functions seen for simple cells (Fig. 3c). However, both the
left and the right halves of the functions showed an expansive
nonlinearity similar to that for simple cells. To quantify this
nonlinearity, we fit the left and the right halves of these functions

separately with a power function y(x) � ��x��, where x and y
represent the result of the convolution and the firing rate
respectively, and � and � are free parameters. The mean
exponent (�) obtained was 2.3 with a standard deviation of 1.1
(Fig. 5e), similar to that measured for simple cells (27, 28) (see
above). The majority of the bimodal functions seen in our
population of complex cells were asymmetric because of differ-
ent gain parameters (�) for the left and right halves. In summary,
each bimodal function can be treated as the sum of two
half-power functions, each representing the contribution of a
subunit, the RF of which is either the same as the principal
component or opposite in sign from it. When we predicted the
firing rate of each neuron by using linear summation of the
responses of the significant principal components after trans-
formation by their corresponding bimodal functions, the results
were not significantly different from those of the neural net-
works (P � 0.64, Wilcoxon signed rank test). These results
indicate that the response of a complex cell to the random-bar
stimuli can be approximated as the sum of a small number of
simple-cell-like subunits.

Generalization of the Model: Predicting Direction Selectivity. It is
important to know whether the current model, which was
developed on the basis of responses to the random-bar stimuli,
can be used to predict responses to other types of stimuli. In some
networks, the locations of the ON and OFF subregions in the
hidden-unit RFs shifted progressively over time (Fig. 4, Cell d;
Fig. 5a), suggesting direction selectivity in these cells. Previous
studies have shown that direction selectivity of simple cells can

Fig. 4. Hidden-unit RFs of networks representing four complex cells (a–d). To
show the contribution of each hidden unit to the network output, these RFs
are scaled by the connection weights from the corresponding hidden units to
the output unit. Only the most significant hidden units are plotted. (Bar:
vertical, 50 msec; horizontal, 1°)

Fig. 5. Decomposing hidden-unit RFs. (a) RFs of the four significant hidden
units of the network representing a complex cell. (Bars: vertical, 50 msec;
horizontal, 1°.) (b) The two most significant principal components. (c) Firing
rate of the neuron vs. the linear response of each principal components (dots:
mean; vertical lines: � SE). The solid curve shows the fit of the data with
half-power functions. (d) Same as c, for a different cell. (e) Summary of the
exponents of the fits (n � 84). Arrow indicates the mean.
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be predicted from their linear STRFs and the expansive non-
linearity in their responses (4, 28). Here, because the response
of a complex cell can be approximated as the sum of several
subunits, we could predict the direction selectivity of the cell by
using the RFs of these subunits and their expansive nonlinearities.

For 19 of the 21 complex cells, we recorded the responses to
full-contrast sinusoidal gratings at the optimal orientation, drift-
ing at the preferred and nonpreferred directions. For each cell,
we computed the direction index as (Rp � Rn)�(Rp � Rn), where
Rp and Rn are the responses at the preferred and the nonpre-
ferred directions. We then predicted the direction index from the
network-derived model. First, we performed a spatiotemporal
Fourier transform of the RF of each subunit. The linear re-
sponses of each subunit to the preferred and the nonpreferred
drifting gratings were obtained from the amplitude and the
phase spectra of the Fourier transform at the spatiotemporal
frequency, where the actual direction index was measured.
Second, these linear responses were passed through the half-
power nonlinearities with the corresponding exponents. Finally,
the direction index of each cell was predicted after summing the
contributions of all of the subunits. For the majority of cells, the
predictions agreed well with the direction selectivity measured
with drifting gratings (Fig. 6a). The mean of the actual direction
index was 0.49, and that of the predicted direction index was 0.38.
The correlation coefficient between the predicted and the actual
indices was 0.80. We also predicted the direction index by using
the linear RF of each complex cell (Fig. 6b, mean direction
index � 0.15, correlation coefficient � 0.47). Compared with the
linear model, the network-derived models performed signifi-
cantly better (P � 0.05). Thus, the stimulus–response relation-
ship of the complex cells extracted from their responses to the
random-bar stimuli was general in that it could predict a
response property measured with a different type of stimulus.
Note that although the predictions of the linear models were
worse than those of the network-derived models, they were
significantly better than random (P � 0.05), indicating that the
linear RFs contained some information about the direction
selectivity of the complex cells.

Discussion
Several circuitry models have been proposed to account for the
response properties of complex cells. A main feature that
distinguishes complex from simple cells is that the response of a
complex cell is insensitive to the contrast-polarity (light or dark)

and stimulus position within the RF. This insensitivity may result
from convergence of multiple simple cells whose RFs have
different ON�OFF locations (1, 29), from nonlinear integration
of thalamic inputs by the active dendrites of pyramidal neurons
(30), or from recurrent excitation between cortical cells with
different ON�OFF locations (31). We have shown that the
responses of complex cells to the random-bar stimuli can be
approximated by the sum of a small number of computational
subunits. However, it is important to note that each network
model provides a functional description of the input–output
relationship of a complex cell rather than a mechanistic model
for the underlying neuronal circuitry. Although the RF of each
subunit resembles that of a simple cell along the axis perpen-
dicular to the preferred orientation of the cell (4, 32), each
subunit does not necessarily correspond to an actual simple cell
in the cortex.

In principle, a two-layer feed-forward neural network can be
trained to approximate any input–output transfer function given
a sufficient number of hidden units (33, 34). An important
question is whether the optimized connection weights exhibit
features that provide insights into the nature of the stimulus-
response transformation. Here, the networks consistently sim-
ulated the responses of complex cells by combining small num-
bers of simple-cell-like hidden units, indicating that such a
structure is especially well suited for approximating the re-
sponses to the type of spatiotemporal stimuli we have used.
Lehky et al. (16) trained feed-forward networks to simulate the
responses of complex cells in monkey V1 to a variety of
two-dimensional static spatial patterns. These networks pre-
dicted very well the total number of spikes in response to each
pattern, but their hidden units had more complex RFs, many of
which did not resemble RFs of simple cells. The difference
between the results of the previous and the present studies may
be due to the difference in the number of hidden units in
the networks, the amount of data used in training, or whether the
networks took into account the temporal dynamics of the
responses. Another possibility is that the two-dimensional spatial
stimuli used in the previous study evoked more complex re-
sponses than did the random-bar stimuli.

The networks extracted the stimulus–response transformation
of complex cells, assuming only that this transformation could be
approximated by a two-layer network with a finite number of
hidden units. Interestingly, the trained networks performed an
operation similar to that of the energy model (19, 35), in which
a complex cell is described as the sum of four halfwave rectified
and squared linear filters (36, 37). The energy model has been
used to explain the responses of complex cells to two-bar stimuli
(11, 38) and to drifting and contrast-reversing gratings (11, 39).
It predicts a bimodal (squaring) relationship between the neu-
ronal firing rate and the linear response of the underlying filter
similar to what we have observed for the principal components
(Fig. 5 c and d). However, there are quantitative differences.
First, the exponents measured for the subunits in our models had
a broad distribution (Fig. 5e), whereas in an ideal energy model,
these exponents have a fixed value of 2. Second, the different
subunits often contributed unequally to the response of the cell,
as indicated by the asymmetry between the left and the right
halves of the bimodal functions (e.g., Fig. 5d Left). To evaluate
the significance of these deviations from the energy model in
fitting the responses of complex cells, we predicted the response
of each cell by summing the squared response of each subunit
with equal weight. The mean correlation coefficient between the
predicted and the actual responses was 0.23, which was lower
than that using the network model (correlation coefficient �
0.31). This difference indicates that the deviations from the ideal
energy model have a significant effect on the performance of the
models. For most of the complex cells in our sample, we observed
linear RFs (Fig. 2b) that contributed significantly to the neuronal

Fig. 6. Predicting direction selectivity of complex cells. (a) The direction
index predicted based on the principal components vs. the actual direction
index. (b) The direction index predicted based on the linear RFs vs. the actual
direction index.
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responses, as indicated by the fact that they can partially predict
the random-bar responses and direction selectivity of these cells
(Figs. 2 c and d and 6b). Linear RFs are not predicted by the
energy model but can be explained by the unequal contributions
of the different subunits.

The network models did not capture the full input–output
relationship of the complex cells, because the correlation coef-
ficient between the predicted and the actual responses was
significantly less than 1. Several factors may have affected the
network performance. First, the hidden-unit activation function
may not fully capture the expansive nonlinearity in the neuronal
responses, which may be why the networks underestimate the
responses at high amplitudes (Fig. 2a). However, this factor
alone could not account for most of the errors in the model,
because predicting the responses by using the best fitted half-
power function of each subunit did not significantly improve the
prediction (see above). Second, the networks predicted the
responses on the basis of stimuli within a window of 267 msec,
which could not account for adaptation occurring at longer time
scales (40, 41) or nonstationarity in the data. Finally, there may
exist more complex nonlinearities, such as contrast normaliza-
tion (28, 37) or the modulation of responses by stimuli in the
nonclassical RFs (42). Such modulation may result from the
activity of a large number of neighboring cells (37), the repre-

sentation of which would require many more hidden units in the
network. Future models incorporating these nonlinearities may
improve the prediction of responses of both simple and complex
cells.

In this study, we have used visual stimuli that were modulated
along one spatial dimension. However, the neural network
method can be used to analyze the responses to two-dimensional
visual stimuli, which may reveal more complex cortical response
properties. Furthermore, because this method does not require
inputs with specific statistical properties, it can be used to
analyze responses to inputs with complicated statistics such as
natural scenes and may thus have a wider applicability than other
nonlinear techniques such as the Wiener kernel approach (43).
Unlike the conventional approach using specialized stimuli to
probe a particular response property, the networks can be
trained on arbitrarily large ensembles of stimulus–response data,
requiring far fewer assumptions about which features of the
stimuli are relevant to the cell. Thus this method may be well
suited for the study of higher cortical areas in which neuronal
properties are more complex and poorly understood.
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