TABLE 3.
Overall performance comparison of SPGNN and our BCGP method on lncRNA-miRNA-circRNA association prediction task.
Methods | lncRNA-miRNA | circRNA-miRNA | ||||||
---|---|---|---|---|---|---|---|---|
F1 | AUC | AP | NDCG | F1 | AUC | AP | NDCG | |
SPGNN (Wang et al., 2023b) | 0.430 | 0.894 | 0.419 | 0.828 | 0.403 | 0.840 | 0.510 | 0.911 |
GCNFormer (Yao et al., 2024) | 0.305 | 0.677 | 0.226 | 0.686 | 0.350 | 0.730 | 0.453 | 0.815 |
BCGP (w/o NCN) | 0.808 | |||||||
BCGP (w/NCN) | 0.439 | 0.903 | 0.435 | 0.812 | 0.572 | 0.948 | 0.712 | 0.957 |
The best results of four evaluation metrics (F1, AUC, AP, and NDCG) are highlighted in bold. In each dataset, significant improvements over the base model are marked with † (paired t-test, p < 0.05$).