Skip to main content
. 2025 Sep 22;13:e75020. doi: 10.2196/75020

Table 4. Parameters of machine learning models.

Model and parameters Values
RFa

 n_estimators
150
 criterion “gini”
 max_depth None
 min_samples_split 2
 min_samples_leaf 1
 max_features “sqrt”
 bootstrap True
 random_state 42
XGBoostb

 n_estimators
150
 learning_rate 0.1
 max_depth 3
 objective “binary:logistic”
 subsample 1.0
 colsample_bytree 1.0
 gamma 0
 reg_alpha 0
 reg_lambda 1
 random_state 42
 use_label_encoder False
 eval_metric “logloss”
DTc

 criterion
“gini”
 max_depth None
 min_samples_split 2
 min_samples_leaf 1
 max_features None
 random_state 42
a

RF: random forest.

b

XGBoost: extreme gradient boosting.

c

DT: decision tree.