Table 4. Parameters of machine learning models.
| Model and parameters | Values | |
|---|---|---|
| RFa | ||
|
n_estimators |
150 | |
| criterion | “gini” | |
| max_depth | None | |
| min_samples_split | 2 | |
| min_samples_leaf | 1 | |
| max_features | “sqrt” | |
| bootstrap | True | |
| random_state | 42 | |
| XGBoostb | ||
|
n_estimators |
150 | |
| learning_rate | 0.1 | |
| max_depth | 3 | |
| objective | “binary:logistic” | |
| subsample | 1.0 | |
| colsample_bytree | 1.0 | |
| gamma | 0 | |
| reg_alpha | 0 | |
| reg_lambda | 1 | |
| random_state | 42 | |
| use_label_encoder | False | |
| eval_metric | “logloss” | |
| DTc | ||
|
criterion |
“gini” | |
| max_depth | None | |
| min_samples_split | 2 | |
| min_samples_leaf | 1 | |
| max_features | None | |
| random_state | 42 | |
RF: random forest.
XGBoost: extreme gradient boosting.
DT: decision tree.