Table 2. Hyperparameter tuning details for machine learning models.
| Algorithm | Parameter | Range of values |
|---|---|---|
| Decision tree | criterion | ‘gini’, ‘entropy’ |
| max_depth | 6, 8, 10 | |
| Random forest | min_samples_leaf | 5, 8 |
| max_depth | 6, 8, 10 | |
| -Nearest neighbor | n_neighbors | 3, 5, 7 |
| max_depth | 5, 7, 10 | |
| Gradient boost | min_samples_leaf | 5, 8 |
| max_depth | 5, 7, 10 | |
| XGBoost | learning_rate | 0.01, 0.05, 0.1 |
| CatBoost | learning_rate | 0.01, 0.05, 0.1 |
| depth | 5, 7, 9 |