Skip to main content
. 2025 Jul 21;11:e3011. doi: 10.7717/peerj-cs.3011

Table 2. Hyperparameter tuning details for machine learning models.

Algorithm Parameter Range of values
Decision tree criterion ‘gini’, ‘entropy’
max_depth 6, 8, 10
Random forest min_samples_leaf 5, 8
max_depth 6, 8, 10
k-Nearest neighbor n_neighbors 3, 5, 7
max_depth 5, 7, 10
Gradient boost min_samples_leaf 5, 8
max_depth 5, 7, 10
XGBoost learning_rate 0.01, 0.05, 0.1
CatBoost learning_rate 0.01, 0.05, 0.1
depth 5, 7, 9